Skip to main content
Log in

Effect of gas phase heat sink on suppression of downward flame spread over thin solid fuels

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

A two-dimensional numerical model of opposed flow flame spread over thin solid fuel is formulated and modeled to study effect of gas phase heat sink (a wire-mesh placed parallel to the fuel surface) on the flame spread rate and flame extinction. The work focuses on the performance of the wire-mesh in normal gravity environment of 21 % oxygen concentration. The simulations were carried out for various mesh parameters (wire diameter, ‘\( \overline{d}_{wr} \)’ and number of wires per unit length, ‘N’) and mesh distance perpendicular to fuel surface (Y mesh ). Experiments were carried out for wire mesh with \( \overline{d}_{wr} = 0.035\,{\text{cm}} \) and N = 5 and were found to complement numerical predictions. Both simulations and experiments show that wire mesh is effective in reducing flame spread rate when placed at distance less than flame width (which is about 0.50 cm). Mesh wire diameter is determined to not have major influence on heat transfer. However, smaller wire diameter is preferred on account better aerodynamics and for increasing heat transfer surface area (here prescribed by parameter ‘N’). Computations show that meshes with more number of wires per unit length are more effective heat sinks. However, the flame extinction occurs only if mesh is located very close to the fuel surface (of the order of 0.15 cm) and at this distance flame suppression is relatively insensitive to number of wires per unit length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\( \bar{A}_{s} \) :

Solid phase pre-exponential factor (1.9 × 105 m/s)

AW :

Wire mesh heat transfer area

\( \bar{B}_{g} \) :

Gas phase pre-exponential factor (1.58 × 109 m3/kg/s)

\( Bo\, \) :

Boltzmann number \( ( = \rho^{*} c_{P}^{*} \bar{U}_{R} /(\sigma \bar{T}_{\infty }^{3} )) \)

\( c_{p}^{ * } \) :

Reference gas-phase specific heat (13.81 kJ/kg/K)

\( c_{p} \) :

Non-dimensional gas-phase specific heat \( ( = \bar{c}_{p} /c_{p}^{ * } ) \)

\( \bar{c}_{s} \) :

Solid-phase specific heat (12.55 kJ/kg/K)

c :

\( c_{p}^{ * } /\bar{c}_{s} \) (1.1)

C :

Correction factor

\( c_{p,i} \) :

Non-dimensional specific heat for species i

\( Da \) :

Damkohler number \( ( = \frac{{\bar{B}_{g} \rho^{ * } \alpha^{ * } }}{{\bar{U}_{R}^{2} }}) \)

\( D_{i} \) :

Diffusion coefficient of species i

\( \overline{d}_{wr} \) :

Mesh wire diameter

\( \bar{E}_{g} \) :

Gas-phase activation energy (87.31 × 104 J/g mol)

E g :

Non-dimensional gas-phase activation energy \( ( = \bar{E}_{g} /\bar{R}_{u} /\bar{T}_{\infty } = 35) \)

\( \bar{E}_{s} \) :

Solid-phase activation energy (13.70 × 104 J/g mol)

E s :

Non-dimensional solid-phase activation energy \( ( = \bar{E}_{s} /\bar{R}_{u} /\bar{T}_{\infty } = 55) \)

\( f_{i} \,\,\,\,\,\, \) :

Stoichiometric mass ratio of species i and fuel

\( \bar{g}_{e} \) :

Gravitational acceleration on surface of earth \( \left( {\bar{g}_{e} = 9.81\,\,{\text{m/s}}^{2} } \right) \)

\( \bar{g} \) :

Gravitational acceleration

g :

Gravitational acceleration (\( {{\overline{g} } \mathord{\left/ {\vphantom {{\overline{g} } {\overline{g}_{e} }}} \right. \kern-\nulldelimiterspace} {\overline{g}_{e} }} \))

\( h_{{_{i} }} \) :

Enthalpy of species i

h s :

Non-dimensional solid fuel thickness \( ( = \bar{h}_{s} /\bar{L}_{R} ) \)

h :

Non-dimensional fuel thickness (\( \bar{h}/\bar{\tau } \))

K:

Absorptivity of the medium

Le :

Lewis number of species \( i\;\left({Le_{\rm F}\,=\, 1,\,Le_{{\rm O_{2}}}\,=\, 1. 1 1,\,Le_{{\rm CO_{2}}}\,=\, 1. 3 9,\,Le_{{\rm H_{2}O}}\,=\,0. 8 3,\,Le_{\rm N2}\,=\, 1} \right) \)

\( \bar{l}_{P} \) :

Pyrolysis length

\( \bar{l}_{ph} \) :

Preheat length

\( \bar{L}_{R} \) :

Reference length (gas phase thermal length, \( \alpha^{ * } /\bar{U}_{R} \))

L :

Non-dimensional latent heat of solid \( (\bar{L}/\bar{c}_{s} /\bar{T}_{\infty } = - 2) \)

LW :

Length of wire

M i :

Molecular weight of species i

\( \dot{m} \) :

Non-dimensional mass flux from solid \( ( = \bar{\dot{m}}/\rho^{ * } /\bar{U}_{R} ) \)

N :

Number of wires per unit length

P :

Non-dimensional pressure \( ( = (\bar{P} - \bar{P}_{\infty } )/\rho^{*} /\bar{U}_{R}^{2} ) \)

P l :

Planck number

\( \bar{P}_{\infty } \) :

Ambient pressure

Pr :

Prandtl number

Qsink :

Heat taken by mesh

\( q_{c} \) :

Conduction heat flux

\( q_{r} \) :

Radiative heat flux

q y+ r q y r :

Positive and negative components of q r in y-direction

q y r :

Net radiative heat flux in y-direction

q x+q x r :

Positive and negative components of q r in x-direction

q x r :

Net radiative heat flux in x-direction

\( Re \) :

Reynolds number

\( \bar{R}_{u} \) :

Universal gas constant

Ra :

Rayleigh number

T* :

Reference temperature (1,250 K)

T :

Non-dimensional gas temperature \( ( = \bar{T}/\bar{T}_{\infty } ) \)

\( \overline{T}_{surface} \) :

Temperature of wire mesh (300 K)

\( T_{gas} \) :

Non-dimensional gas temperature

\( \bar{T}_{\infty } \) :

Ambient temperature (300 K)

\( T_{L} \) :

Non-dimensional temperature at which L is given \( ( = \bar{T}_{L} /\bar{T}_{\infty } = 1) \)

\( T_{s} \) :

Non-dimensional solid temperature \( ( = \bar{T}_{s} /\bar{T}_{\infty } ) \)

\( \bar{U}_{B} \) :

Reference buoyant velocity

\( \bar{U}_{R} \) :

Reference velocity (\( \max \,(\bar{U}_{\infty } + \bar{U}_{B} ) \))

\( \bar{U}_{\infty } \) :

Forced flow velocity

\( u \) :

Non-dimensional velocity in x-direction (\( = {{\overline{u} } \mathord{\left/ {\vphantom {{\overline{u} } {\overline{U}_{R} }}} \right. \kern-\nulldelimiterspace} {\overline{U}_{R} }} \))

v :

Non-dimensional velocity in y-direction (\( = {{\overline{v} } \mathord{\left/ {\vphantom {{\overline{v} } {\overline{U}_{R} }}} \right. \kern-\nulldelimiterspace} {\overline{U}_{R} }} \))

\( V_{f} \) :

Flame spread rate

\( x,\,X \) :

Non-dimensional x-coordinate (\( = {{\overline{x} } \mathord{\left/ {\vphantom {{\overline{x} } {\overline{L}_{R} }}} \right. \kern-\nulldelimiterspace} {\overline{L}_{R} }} \))

X i :

Mole fraction of species i

\( y,\,Y \) :

Non-dimensional y-coordinate (\( = {{\overline{y} } \mathord{\left/ {\vphantom {{\overline{y} } {\overline{L}_{R} }}} \right. \kern-\nulldelimiterspace} {\overline{L}_{R} }} \))

Y i :

Mass fraction of species i

Y mesh :

Mesh location

α* :

Reference gas thermal diffusivity (2.13 × 10−4 m2/s)

\( \bar{\alpha }_{s} \) :

Reference solid thermal diffusivity

α :

Solid absorptance (0.92)

β :

Extinction coefficient

ε :

Solid emittance (0.92)

κ* :

Reference gas thermal conductivity (8.07 × 10−5 W/m/K)

κ :

Non-dimensional gas thermal conductivity \( ( = \bar{k}/k^{ * } ) \)

κ :

Stefan–Boltzmann constant (5.6762 × 10−6 J/m2/s/K4)

μ* :

Reference gas viscosity (4.1 × 10−5 kg/m/s)

μ :

Non-dimensional gas viscosity \( ( = \bar{\mu }/\mu^{ * } ) \)

ρ* :

Reference gas density (0.275 kg/m3)

ρ :

Non-dimensional gas density \( ( = \bar{\rho }/\rho^{ * } ) \)

\( \bar{\rho }_{\infty } \) :

Ambient gas density (1.15 kg/m3)

\( \bar{\rho }_{s} \) :

Solid fuel density (750 kg/m3)

\( \bar{\tau } \) :

Solid half thickness (5.0 × 10−3 cm)

\( \omega^{\prime\prime\prime}_{F} \) :

Non-dimensional fuel source term \( ( = - Da\rho^{2} Y_{\text{F}} Y_{{{\text{O}}_{2} }} \exp ( - E_{g} /T)) \)

\( \omega^{\prime\prime\prime}_{i} \) :

Sink or source term for species i \( ( = f_{i} \omega^{\prime\prime\prime}_{F} ) \)

ω :

Scattering albedos

\( \xi ,\,\eta ,\,\mu \) :

Direction cosines in x, y and z directions

Г :

Non-dimensional solid parameter \( ( = \bar{\rho }_{s} \bar{c}_{s} \bar{V}_{F} /\rho^{ * } /c_{P}^{ * } /\bar{U}_{R} ) \)

\( \Upomega \) :

Ordinate direction (\( \xi ,\,\eta ,\,\mu \))

B :

Refers to buoyant

f :

Flame

F :

Refers to fuel

g :

Gas phase

i :

Species i (i = 1, N)

L :

Refers to latent heat

Max:

Maximum

Min:

Minimum

p :

Pyrolysis

R,r :

Reference

s :

Solid phase

w :

Value at wall

W:

Wire-mesh

x :

Along x-direction, or derivative with respect to x

y :

Along y-direction, or derivative with respect to y

∞:

Value at far field

*:

Evaluated at T*

–:

Dimensional quantity

References

  1. De Ris, J.N.: Spread of a laminar diffusion flame. Proc. Combust. Inst. 12, 241–252 (1969)

    Google Scholar 

  2. Lastrina, F.A., Magee, R.S., McAlvey III, R.F.: Flame spread over fuel beds: solid phase energy consideration. Proc. Combust. Inst. 12, 935–948 (1969)

    Google Scholar 

  3. Sirignano, W.A.: A critical discussion of theories of flame spread across solid and liquid fuels. Combust. Sci. Technol. 6, 95–105 (1972)

    Article  Google Scholar 

  4. Ray, S.R.: Flame spread over solid fuels. PhD Dissertation, Princeton University (1981)

  5. Fernandez-Pello, A.C., Hirano, S.T.: Controlling mechanisms of flame spread. Combust. Sci. Technol. 32, 1–33 (1983)

    Article  Google Scholar 

  6. Wichman, I.: Theory of opposed flow flame spread. Prog. Energy Combust. Sci. 18, 553–593 (1992)

    Article  Google Scholar 

  7. Sirignano, W.A., Schiller, D.N.: In: Dryer, F.L., Sawyer, R.F. (eds.) Mechanisms of Flame Spread Across Condensed Phase Fuels, Physical and Chemical Aspects to Combustion, pp. 353–407. Gordon and Breach Science Publishers, Yverdon (1997)

    Google Scholar 

  8. Olson, S.L., Miller, F.J., Wichman, I.S.: Flame spread over thin fuels in actual and simulated microgravity conditions. Combust. Flame 156, 1214–1226 (2009)

    Article  Google Scholar 

  9. Zhang, X., Yu, Y.T.: Experimental studies on the three-dimensional effects of opposed-flow flame spread over thin solid materials. Combust. Flame 158, 1193–1200 (2011)

    Article  Google Scholar 

  10. Kumar, C., Kumar, A.: On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels. Combust. Theor. Model. 16(3), 537–569 (2012)

    Article  Google Scholar 

  11. Kumar, C., Kumar, A.: Opposed flow flame spread over thin solid fuels: a 2D numerical study on flame-spread transition from normal gravity to zero gravity and vice versa. Int. J. Aerosp. Innov. 1, 175–187 (2009)

    Article  Google Scholar 

  12. Kumar, A.: A numerical model of opposed flow flame spread over thin solid fuels. PhD Dissertation, Case Western Reserve University, Cleveland (2004)

  13. Kumar, A.: Fire Safety Considerations: Flame Spread in Terrestrial and Space Environment. Proceedings of the 20th National Convention for Aerospace Engineers (NCASE), pp. 29–30. Trivandrum, Kerala, India (2006)

  14. Smooke, M.D., Giovangigli, V.: Formulation of the Premixed and Nonpremixed Test Problem, Lecture Notes in Physics, Series 384, Chapter 1. Springer, New York

  15. Rajput, R.K.: Heat and Mass Transfer. S. Chand and Company Ltd, New Delhi (2001)

    Google Scholar 

  16. Bhattacharjee, S., Altenkirch, R.A.: A comparison of theoretical and experimental results in flame spread over thin condensed fuels in a quiescent microgravity environment. Proc. Combust. Inst. 24(1), 1669–1676 (1992)

    Google Scholar 

  17. Tolejko, K., Kleinhenz, J., Kumar, A., Pettegrew, R., T’ien, J.S.: Downward flame spread over a composite thin solid: comparison of Experimental and Model results. In: Proceedings of the 4th Joint Meeting of U.S. Sections of the Combustion Institute

  18. Balsara, D.: Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods. J. Quant. Spectrosc. Radiat. Transf. 69, 671–707 (2001)

    Article  Google Scholar 

  19. Bedir, H., T’ien, J.S., Lee, H.S.: Comparison of different radiation treatments for a one-dimensional diffusion flame. Combust. Theor. Model. 1, 395–404 (1997)

    Google Scholar 

  20. Rhatigan, J., Bedir, H., T’ien, J.S.: Gas phase radiative effects on the burning and extinction of a solid. Combust. Flame 112, 231–241 (1998)

    Article  Google Scholar 

  21. Tien, C.L.: Thermal radiation properties of gases. In: Irvine Jr, T.F., Hartnett, J.P. (eds.) Advances in Heat Transfer, vol. 5, pp. 234–254. Academic Press, New York (1968)

    Google Scholar 

  22. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, New York (1980)

    MATH  Google Scholar 

  23. Grayson, G., Sacksteder, K.R., Ferkul, P.V., T’ien, J.S.: Flame spreading over a thin solid in low-speed concurrent flow-drop tower experimental results and comparison with theory. Microgravity Sci. Technol. 7(2), 187–195 (1994)

    Google Scholar 

Download references

Acknowledgments

Authors would like to gratefully acknowledge and thank Chenthil Kumar, Doctoral Scholar in Department of Aerospace Engineering, Indian Institute of Technology Madras, for his valuable assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Additional information

Proceedings of 21st National and 10th ISHMT-ASME, December 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malhotra, V., Kumar, A. Effect of gas phase heat sink on suppression of downward flame spread over thin solid fuels. Int J Adv Eng Sci Appl Math 4, 138–151 (2012). https://doi.org/10.1007/s12572-012-0064-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-012-0064-0

Keywords

Navigation