Skip to main content
Log in

Evaluation of prediction error based fuzzy model clustering approaches for multiple model learning

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Identifying multiple models from both static and dynamic data is an important problem in several engineering fields. Clustering based on Euclidean distance measure has been proposed to solve this problem. However, since Euclidean distance is not directly related to model fidelity, these approaches can lead to suboptimal results even when the number of models is known. In this work, through a three step algorithm that includes initialization, prediction error based fuzzy clustering and model rationalization, we evaluate the possibility of uncovering multiple model structures from data. The three step algorithm is also assessed for the identification of piecewise auto regressive exogenous systems with unknown number of models and their (unknown)orders. The basic approach can be extended for trend analysis and generalized principal component analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baptista, R.S., Ishihara, J.Y., Borges, G.A.: A Split and Merge Algorithm for Identification of Piecewise Affine Systems. In: American Control Conference, pp. 2018–2023. San Francisco, USA (2011)

  2. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to piecewise affine system identification. IEEE Trans. Autom. Control 50(10), 1567–1580 (2005)

    Article  MathSciNet  Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

  4. Chen, J., Xi, Y., Zhang, Z.: A clustering algorithm for fuzzy model identification. Fuzzy Sets Syst. 98, 319–329 (1998)

    Article  MathSciNet  Google Scholar 

  5. Cherkassky, V., Ma, Y.: Multiple model regression estimation. IEEE Trans. Neural Netw 16, 785–798 (2005)

    Article  Google Scholar 

  6. DeSarbo, W.S.: A Maximum likelihood methodology for clusterwise linear regression. J. Classif. 5, 249–282 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. DeSarbo, W.S., Oliver, R.L., Rangaswamy, A.: A Simulated annealing methodology for clusterwise linear regression. Psychometrika 4, 707–736 (1989)

    Article  Google Scholar 

  8. Dufrenois, F., Hamad, D.: Fuzzy Weighted Support Vector Regression For Multiple Linear Model Estimation: Application to Object Tracking in Image Sequences. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1289–1294. Orlando, Florida, USA (2007)

  9. D’Urso, P., Massari, R., Santoro, A.: A class of fuzzy clusterwise regression models. Inf. Sci. 180, 4737–4762 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elfelly, N., Dieulot, J., Benrejeb, M., Borne, P.: A new appraoch for multimodel identification of complex systems based on both neural and fuzzy clustering algorithms. Eng. Appl. Artif. Intell. 23, 1064–1071 (2010)

    Article  Google Scholar 

  11. Ferrari-Trecate, G., Musellic, M., Liberatid, D., Morari, M.: A clustering technique for the identification of piecewise affine systems. Automatica 39, 205–217 (2003)

    Article  MATH  Google Scholar 

  12. Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. Pattern Anal Mach Intell 21, 450–465 (1999)

    Article  Google Scholar 

  13. Gegúndez, M.E., Aroba, J., Bravo, J.M.: Identification of piecewise affine systems by means of fuzzy clustering and competitive learning. Eng. Appl. Artif. Intell. 21, 1321–1329 (2008)

    Article  Google Scholar 

  14. Gugiliya, J.K., Gudi, R.D., Lakshminarayanan, S.: Multi-model decomposition of nonlinear dynamics using a fuzzy-CART approach. J. Process Control 15(4), 417–434 (2005)

    Article  Google Scholar 

  15. Hennig, C.: Models and Methods for Clusterwise Linear Regression. Springer, Heidelberg (1999)

    Google Scholar 

  16. Hennig, C.: Identifiability of models for clusterwise linear regression. J. Classif. 17, 273–296 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, X., Huang, B.: Robust identification of piecewise/switching autoregressive exogeneous process. AIChE J. 56, 7 (2010)

    Google Scholar 

  18. Juloski, A., Weiland, S., Heemels, W.: A Bayesian approach to identification of hybrid systems. In: 43rd Conference on Decision and Control, pp. 13–19. Paradise Island, Bahamas (2004)

  19. Klawonn, F., Hoppner, F.: Advances in Intelligent Data Analysis V. Springer, Berlin (2003)

  20. Kung, C., Su, J., Nieh, Y.: A Novel Cluster Validity Criterion for Fuzzy c-Regression Models. In: FUZZ-IEEE, pp. 1885–1890. Korea (2009)

  21. Li, C., Zhou, J., Xiang, X., Li, Q., An, X.: T-S fuzzy model ientification based on a novel fuzzy c-regression model clustering algorithm. Eng. Appl. Artif. Intell. 22, 646–653 (2009)

    Article  Google Scholar 

  22. Nakada, H., Takaba, K., Katayama, T.: Identification of piecewise affine systems based on statistical clustering technique. Automatica 41, 905–913 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rengaswamy, R., Venkatasubramanian, V.: A fast training neural network and its updation for incipient fault detection and diagnosis. Comput. Chem. Eng. 24, 431–437 (2000)

    Article  Google Scholar 

  24. Roll, J., Bemporad, A., Ljung, L.: Identification of piecewise affine systems via mixed-integer programming. Automatica 40, 37–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Skeppstedt, A., Ljung, L., Millnert, M.: Construction of composite models from observed data. Int. J. Control 55, 141–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Soltani, M., Aissaoui, B., Chaari, A., Ben Hmida, F., Gossa, M.: A modified fuzzy c-regression model clustering algorithm for t-s model identification. In: 8th International Multi-Conference on Systems Signals & Devices (2011)

  27. Späth, H.: Multiple model regression estimation. Computing 22, 367–373 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Venkat, N., Gudi, D.: Fuzzy segregation-based identification and control of nonlinear dynamic systems. Ind. Eng. Chem. Res. 41, 538–552 (2002)

    Article  Google Scholar 

  29. Venkat, N., Vijaysai, P., Gudi, D.: Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space. J. Process Control 13, 473–488 (2003)

    Article  Google Scholar 

  30. Vidal, R.: Recursive identification of switched arx systems. Automatica 44, 2274–2287 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, M., Ko, C.: On Cluster-wise fuzzy regression analysis. IEEE Trans. Syst. Man Cybernet. B: Cybernet. 27, 1–13 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunathan Rengaswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuppuraj, V., Rengaswamy, R. Evaluation of prediction error based fuzzy model clustering approaches for multiple model learning. Int J Adv Eng Sci Appl Math 4, 10–21 (2012). https://doi.org/10.1007/s12572-012-0058-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-012-0058-y

Keywords

Navigation