Skip to main content
Log in

Probabilistic qualitative analysis for fault detection and identification of an on-line phosphate analyzer

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

On-line, real-time collection of measurements remains a key challenge in water quality monitoring and control due to unknown and varying quality of on-line sensor data. Today’s data quality assessment is typically based on a comparison of sensor-based measurements and grab samples of the sampled solution taken next to the on-line analyzer and analyzed in a laboratory. In this work, internal data is used for fault detection and identification of a phosphate analyzer to inspect the measuring process itself. These internal data is shown to be information-rich with respect to the analyzer’s status. Furthermore, this information is captured well by means of a newly developed method for qualitative analysis of time series. This method was developed with global optimality in mind and therefore lends itself to a probabilistic assessment of the qualitative representation of time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nopens, I., Villez, K., Rieger, L., Vanrolleghem, P.A.: Monitoring the water cycle—state of the art and future needs. IWA Yearbook 2007, 33–36 (2007)

  2. Thomann, M., Rieger, L., Frommhold, S., Siegrist, H., Gujer, W.: An efficient monitoring concept with control charts for on-line sensors. Water Sci. Technol. 46(4–5), 107–116 (2002)

    Google Scholar 

  3. Rosén, C., Röttorp, J., Jeppsson, U.: Multivariate monitoring: challenges and solutions for modern wastewater treatment operation. Water Sci. Technol. 47(2), 171–179 (2003)

    Google Scholar 

  4. Rieger, L., Vanrolleghem, P.A.: monEAU: a platform for water quality monitoring networks. Water Sci. Technol. 57(7), 1079–1086 (2008)

    Article  Google Scholar 

  5. American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF): Standard Methods for the Examination of Water & Wastewater: Centennial Edition (Eaton, A.D., L.S., Clesceri, E.W., Rice, A.E., Greenberg, M.A.H. Franson, (Eds.)), Washington D.C., 1368 pp (2005)

  6. Villez, K., Rosén, C., Anctil, F., Duchesne, C., Vanrolleghem, P.A.: Qualitative representation of trends: an alternative approach to process diagnosis and control. Water Sci. Technol. 57(10), 1525–1532 (2008)

    Article  Google Scholar 

  7. Villez, K., Rosén, C., Duchesne, C., Anctil, F., Vanrolleghem, P.A.: Qualitative representation of trends (QRT): extended method for proper inflection point recognition. Comput. Chem. Eng. (2011) (Submitted)

  8. Villez, K., Keser, B., Rieger, L.: Qualitative representation of trends (QRT) as a tool for automated data-driven diagnostics for on-line sensors. In: Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SafeProcess2009), Barcelona, Spain, 30 June–July 3, 2009, appeared on CD-ROM (2009)

  9. Bakshi, B., Stephanopoulos, G.: Representation of process trends—part III. Multiscale extraction of trends from process data. Comput. Chem. Eng. 18, 267–302 (1994)

    Article  Google Scholar 

  10. Rengaswamy, R., Venkatasubramanian, V.: A syntactic pattern-recognition approach for process monitoring and fault diagnosis. Eng. Appl. Artif. Intell. 8, 35–51 (1995)

    Article  Google Scholar 

  11. Flehmig, F., Watzdorf, R.V., Marquardt, W.: Identification of trends in process measurements using the wavelet transform. Comput. Chem. Eng. 22, S491–S496 (1998)

    Article  Google Scholar 

  12. Akbaryan, F., Bishnoi, P.R.: Smooth representation of trends by a wavelet-based technique. Comput. Chem. Eng. 24, 1913–1943 (2000)

    Article  Google Scholar 

  13. Akbaryan, F., Bishnoi, P.R.: Fault diagnosis of multivariate systems using pattern recognition and multisensor data analysis technique. Comput. Chem. Eng. 25, 1313–1339 (2001)

    Article  Google Scholar 

  14. Dash, S., Maurya, M.R., Venkatasubramanian, V.: A novel interval-halving framework for automated identification of process trends. AIChE J. 50, 149–162 (2004)

    Article  Google Scholar 

  15. Charbonnier, S., Garcia-Beltan, C., Cadet, C., Gentil, S.: Trends extraction and analysis for complex system monitoring and decision support. Eng. Appl. Artif. Intell. 18, 21–36 (2005)

    Article  Google Scholar 

  16. Villez, K., Rengaswamy, R., Venkatasubramanian, V.: Generalized qualitative shape constrained spline fitting. Technometrics (2012) (Submitted)

  17. Parker, R.G., Rardin, R.L.: Discrete Optimization. Academic Press, New York (1998)

    Google Scholar 

  18. Forst, W., Hoffmann, D.: Optimization—Theory and Practice. Springer, New York (2010)

    Book  MATH  Google Scholar 

  19. Kuipers, B.: Reasoning with qualitative models. Artif. Intell. 59, 125–132 (1993)

    Article  Google Scholar 

  20. Nesterov, Y.: Squared functional systems and optimization problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.) High performance optimization, applied optimization, vol. 33, pp. 405–440. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  21. Papp, D.: Optimization models for shape-constrained function estimation problems involving nonnegative polynomials and their restrictions. M.Sc. thesis, Rutgers University (2011)

  22. Swan, A.V.: Algorithm AS 16: maximum likelihood estimation from grouped and censored normal data. J. R. Stat. Soc. Ser. C Appl. Stat. 18(1), 110–114 (1969)

    Article  MathSciNet  Google Scholar 

  23. Wolynetz, M.S.: Maximum likelihood estimation in a linear model from confined and censored normal data. J. R. Stat. Soc. Ser. C Appl. Stat. 28(2), 195–206 (1979)

    Article  MATH  Google Scholar 

  24. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (1999)

    Google Scholar 

  25. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2003)

    Article  Google Scholar 

  26. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Parsons, S.: Qualitative Methods for Reasoning Under Uncertainty. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  28. Forbus, K.D.: Qualitative process theory. Artif. Intell. 24, 85–168 (1984)

    Article  Google Scholar 

  29. Villez, K., Srinivasan, B., Rengaswamy, R., Narasimhan, S., Venkatasubramanian, V.: Kalman-based strategies for fault detection and identification (FDI): extensions and critical evaluation for a buffer tank system. Comput. Chem. Eng. 35, 806–816 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Villez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villez, K., Rieger, L., Keser, B. et al. Probabilistic qualitative analysis for fault detection and identification of an on-line phosphate analyzer. Int J Adv Eng Sci Appl Math 4, 67–77 (2012). https://doi.org/10.1007/s12572-012-0056-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-012-0056-0

Keywords

Navigation