Skip to main content

Advertisement

Log in

Microstructure engineering of titanium alloys via small boron additions

  • Original Research
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Several studies, dating back to 1950s, were conducted on the addition of boron to titanium alloys, with an aim to improve the stiffness and strength. The majority of these efforts did not lead to successful transition due to shortfalls in mechanical property combinations and insufficient understanding of the effect of boron addition on processing-microstructure-property relationships. Recently, a team of researchers critically evaluated boron-modified titanium alloys to assess their applicability for aerospace applications. Several unique opportunities offered by boron-modified Ti alloys were discovered during these evaluations. Boron is essentially insoluble in titanium and precipitates as fine TiB whiskers. Small additions (~0.1 wt%) of boron to titanium alloys were found to result in dramatically finer grain sizes in the as-cast condition. The presence of TiB precipitates restricts the grain growth at elevated-temperatures, even above the beta transus. Together, these features offer the potential to develop affordable thermo-mechanical processing paths for titanium alloys. This recent work also demonstrated that, via small boron additions, the strength and stiffness of conventional titanium alloys could be increased up to 20% while retaining acceptable fracture and fatigue properties. In this paper, we review this new class of titanium alloys and describe unique benefits obtained via microstructure engineering that were discovered in several recent studies by the authors and their collaborators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Gambogi, J., Gerdemann, S.J.: Titanium metal: Extraction to application US DOE Report ARC-1999-060

  2. Graft, W.H., Levinson, D.W., Rostoker, W.: Trans. ASM 49, 263 (1957)

    Google Scholar 

  3. Brown, A.R.G., Brooks, H., Jepson, K.S., Lewis, G.I.: Tech. Note No. MET/PHYS 343. Royal Aircraft Establishment, Ministry of Aviation, London (1961)

  4. Abkowitz, S., Weihrauch, P. F., Heussi, H. L., Abkowitz, S.: P/M titanium matrix composites: from war games to fun & games, Titanium’95: Science and Technology. In: Blenkinsop, P.A., Evans, W.J., Flower, H.M. (eds.) Proceedings of the eighth world conference on Titanium, 22–26 Oct 1995. The Institute of Materials, pp. 2722–2730. Birmingham, London (1996)

  5. Abkowitz, S., Abkowitz, S.M., Fisher, H., Schwartz, P.J.: JOM 56(5), 37–41 (2004)

    Article  Google Scholar 

  6. High speed research—Airframe technology, MDC Report CRAD-9408-TR-2679, Jan 1997

  7. Saito T., Furuta, T., Yamaguchi, T.: Development of low cost titanium matrix composite, recent advances in titanium metal matrix composites. In: Froes, F.H., Storer, J. (eds.) Proceedings of a symposium held during Materials Week, October 2–6, 1994, pp. 33–44. The Minerals, Metals & Materials Society, Rosemont (1995)

  8. Saito, T.: JOM 56(5), 33–36 (2004)

    Article  Google Scholar 

  9. Yolton, C.F., Moll, J.H.: Evaluation of a discontinuously reinforced Ti–6Al–4V composite Titanium ‘95: Science and Technology. In: Blenkinsop, P.A., Evans, W.J., Flower, H.M. (eds.) Proceedings of the eighth world conference on Titanium, 22–26 Oct 1995, held at Birmingham, pp. 2755–2762. The Institute of Materials, London (1996)

  10. Yolton, C.F.: JOM 56(5), 56–59 (2004)

    Article  Google Scholar 

  11. Zhu, J., Kamiya, A., Yamada, T., Shi, W., Naganuma, K.: Mater. Sci. Eng A 339, 53 (2003)

    Google Scholar 

  12. Christodoulou, J.A., Flower, H.M.: Adv. Eng. Mater. 2, 631–638 (2000)

    Article  Google Scholar 

  13. Murray, J.L., Liao, P.K., Spear, K.E.: Binary alloy phase diagrams. In: Baker, H. (ed). Materials Park. OH: ASM International. pp. 285 (1992)

  14. Godfrey, T., Goodwin, P.S., Ward-Close, C.M.: Adv. Eng. Mater.2, 85–92 (2000)

    Google Scholar 

  15. Ivasishin, O.M., Teliovych, R.V., Ivanchenko, V.G., Tamirisakandala, S., Miracle, D.B.: Metall. Mater. Trans. 39A, 402–416 (2008)

    Article  Google Scholar 

  16. Lieberman, S.: Doctoral dissertation. Georgia Institute of Technology, Atlanta (2007)

  17. Greer, A.L., Cooper, P.S., Meredith, M.W., Schneider, W., Schumacher, P., Spittle, J.A.: Adv. Eng. Mater. 5, 81 (2003)

    Google Scholar 

  18. Tamirisakandala, S., et al.: Scr. Mater. 53, 1421–1426 (2005)

    Article  Google Scholar 

  19. Tamirisakandala, S., et al.: J. Mater. Eng. Perf. 14, 741–746 (2005)

    Article  Google Scholar 

  20. Palty, A.E., Margolin, H., Nielsen, J.P.: Trans. ASM 46, 312 (1954)

    Google Scholar 

  21. Cherukuri, B., Srinivasan, R., Tamirisakandala, S., Miracle, D.B.: Scr. Mater. 60, 496–499 (2009)

    Article  Google Scholar 

  22. Tamirisakandala, S., Bhat, R.B., Miracle, D.B., Boddapati, S., Bordia, R., Vanover, R., Vasudevan, V.K.: Scr. Mater. 53, 217–222 (2005)

    Article  Google Scholar 

  23. Srinivasan, R., Bennett, M.D., Tamirisakandala, S., Miracle, D.B., Yu, K.O., Sun, F.: J. Mater. Eng. Perf. 18(4), 390–398 (2009)

    Article  Google Scholar 

  24. McEldowney, D.J.: PhD Thesis, University of Dayton (2006)

  25. Sen, I., Tamirisakandala, S., Miracle, D.B., Ramamurty, U.: Acta Mater. 55, 4983–4993 (2007)

    Article  Google Scholar 

  26. McEldowney, D.J., Tamirisakandala, S., Miracle, D.B.: Metall. Mater. Trans. 41A, 1003–1015 (2010)

    Article  Google Scholar 

  27. Sen, I., Ramamurty, U.: Scr. Mater. 62, 37–40 (2010)

    Article  Google Scholar 

  28. Sen, I., Maheshwari, L., Tamirisakandala, S., Miracle, D.B., Ramamurty, U.: Mater. Sci. Eng. A 518, 162–166 (2009)

    Article  Google Scholar 

  29. Boehlert, C.J., Tamirisakandala, S., Curtin, W.A., Miracle, D.B.: Scr. Mater. 61, 245–248 (2009)

    Article  Google Scholar 

  30. Schwendiman, K.: MS Thesis, US Air Force Institute of Technology (2007)

  31. Sen, I., Gopinath, K., Datta, R., Ramamurty, U.: Acta Mater. 58, 6799–6809 (2010)

    Article  Google Scholar 

  32. Chen,W.: PhD Thesis, Michigan State University, Lansing MI (2010)

  33. Chen, W., Boehlert, C.J.: Metall. Mater. Trans. 40A, 1568–1578 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of in-house research at the Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA. The authors acknowledge contributions made by several collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tamirisakandala.

Additional information

S. Tamirisakandala was formerly with FMW Composite Systems, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamirisakandala, S., Miracle, D.B. Microstructure engineering of titanium alloys via small boron additions. Int J Adv Eng Sci Appl Math 2, 168–180 (2010). https://doi.org/10.1007/s12572-011-0033-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-011-0033-z

Keywords

Navigation