Skip to main content
Log in

Electrical conductivity based microstructure and strength prediction of plain and modified concretes

  • Original Research
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Electrical response of cementitious systems can be used to understand the evolving microstructure, and thus to provide indications of the mechanical and durability performance of such systems. This paper deals with the use of a generalized effective medium (GEM) theory to predict the porosity of cement pastes and concretes containing several cement replacement materials. Methodologies to obtain the pore solution conductivities and an equivalent soild phase conductivity in the case of concretes are outlined. The predicted porosities are found to match well with the experimental values obtained from a vacuum saturation method. It is shown in this paper that the critical exponent in the GEM equation influences the predicted porosities and a universal value for this exponent cannot be used in continuum percolating systems such as cement pastes and concretes. The thermal signature of hydrating cementitious systems, represented using the equivalent age maturity index, is related to a microstructural parameter obtained from electrical impedance. A unique relationship is observed between the equivalent age and the microstructural parameter irrespective of the mixture design parameters thereby providing a crucial link between maturity and microstructure development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Christensen, B.J., Coverdale, R.T., Olson, R.A., Ford, S.J., Garboczi, E.J., Jennings, H.M., Mason, T.O.: Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation, and application. J. Am. Ceram. Soc. 77(11), 2789–2804 (1994)

    Article  Google Scholar 

  2. McCarter, W.J., Starrs, G., Chrisp, T.M.: Immitance spectra for Portland cement/fly ash based binders during early hydration. Cem. Concr. Res. 30, 377–387 (1999)

    Article  Google Scholar 

  3. McCarter, W.J., Starrs, G., Chrisp, T.M., Blewett, J.: Characterization and monitoring of cement-based systems using intrinsic electrical property measurements. Cem. Concr. Res. 30, 197–206 (2003)

    Article  Google Scholar 

  4. Gu, P., Xie, P., Beaudoin, J.J.: Impedance characterization of micro-cracking behavior in fiber-reinforced cement composites. Cem. Concr. Compd. 15(3), 173–180 (1993)

    Article  Google Scholar 

  5. Neithalath, N., Weiss, J., Olek, J.: Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance. Cem. Concr. Res. 36, 2074–2085 (2006)

    Article  Google Scholar 

  6. Li, Z., Wei, X., Li, W.: Preliminary interpretation of portland cement hydration process using resistivity measurements. ACI Mater. J. 100(3), 253–257 (2003)

    Article  Google Scholar 

  7. Schwarz, N., DuBois, M., Neithalath, N.: Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes. Cem. Concr. Compos. 29(9), 656–666 (2007)

    Article  Google Scholar 

  8. Whittington, H.W., McCarter, J., Forde, M.C.: The conduction of electricity through concrete. Mag. Concr. Res. 33(114), 48–60 (1981)

    Article  Google Scholar 

  9. Neithalath, N.: Extracting the performance predictors of pervious concretes from electrical conductivity spectra. Cem. Concr. Res. 37(5), 796–804 (2007)

    Article  Google Scholar 

  10. Manchiryal, R.K., Neithalath, N.: Analysis of the influence of material parameters on the electrical conductivity of cement pastes and concretes. Mag. Concr. Res. 61(4), 257–270 (2009)

    Article  Google Scholar 

  11. Christensen, B.J., Mason, T.O., Jennings, H.M.: Influence of silica fume on the early hydration of Portland cements using impedance spectroscopy. J. Am. Ceram. Soc. 75(4), 939–945 (1992)

    Article  Google Scholar 

  12. Jain, J.A., Neithalath, N.: Chloride transport in fly ash and glass powder modified concretes-Influence of test methods on microstructure. Cem. Concr. Compos. 32(2), 148–156 (2010)

    Article  Google Scholar 

  13. Neithalath, N., Jain, J.A.: Relating rapid chloride transport parameters of concretes to microstructural features extracted from electrical impedance. Cem. Concr. Res. 40(7), 1041–1051 (2010)

    Article  Google Scholar 

  14. ASTM C 1074: Standard Practice for Estimating Concrete Strength by the Maturity Method, 9 pp. ASTM International, West Conshohocken (2004)

  15. Kovacik, J.: Electrical conductivity of two-phase composite material. Scr. Mater. 39(2), 153–157 (1998)

    Article  Google Scholar 

  16. Boccaccini, A.R.: Predicting the electrical conductivity of two phase composite materials. Scr. Mater. 36(10), 1195–1200 (1997)

    Article  Google Scholar 

  17. Sen, P.N., Scala, C., Cohen, M.H.: A self similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46(5), 781–795 (1981)

    Article  Google Scholar 

  18. Bussian, A.E.: Electrical conductance in a porous medium. Geophysics 48(9), 1258–1268 (1983)

    Article  Google Scholar 

  19. Milton, G.W.: Concerning bounds on the transport and mechanical properties of multicomponent composite materials. Appl. Phys. A 26, 125–130 (1981)

    Article  Google Scholar 

  20. Stroud, D.: Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 12, 3368–3373 (1975)

    Article  MathSciNet  Google Scholar 

  21. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)

    Article  MATH  Google Scholar 

  22. McLachlan, D.S.: Measurement and analysis of a model dual-conductivity medium using a generalized effective-medium theory. J. Phys. C: Solid State Phys. 21, 1521–1532 (1988)

    Article  MathSciNet  Google Scholar 

  23. Merrill, W.M., Diaz, R.E., LoRe, M.M., Squires, M.C., Alexopoulos, N.G.: Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum. IEEE Trans. Antennas Propag. 47, 142–148 (1999)

    Article  Google Scholar 

  24. Cai, W.-Z., Tu, S.-T., Gong, J.-M.: A physically based percolation model of the effective electrical conductivity of particle filled composites. J. Compos. Mater. 40(23), 2131–2142 (2006)

    Article  Google Scholar 

  25. McLachlan, D.S., Blaszkiewicz, M., Newnham, R.E.: Electrical resistivity of composites. J. Am. Ceram. Soc. 73(8), 2187–2203 (1990)

    Article  Google Scholar 

  26. McLachlan, D.S., Rosenbaum, R., Albers, A., Eytan, G., Grammatica, N., Hurvits, G., Pickup, J., Zaken, E.: The temperature and volume fraction dependence of the resistivity of granular Al-Ge near the percolation threshold. J. Phys. Condens Matter 27(5), 4829 (1993)

    Article  Google Scholar 

  27. Bentz, D.P.: Fibers, percolation, and spalling of high performance concrete. ACI Mater. J. 97(3), 351–359 (2000)

    Google Scholar 

  28. Garboczi, E.J., Bentz, D.P.: Modelling of the microstructure and transport properties of concrete. Constr. Build. Mater. 10(5), 293–300 (1996)

    Article  Google Scholar 

  29. Carmona, F., Barreau, F., Delhaes, P., Canet, R.: An experimental model for studying the effect of anisotropy in percolative conduction. J. Phys. Lett. 41, 531–534 (1980)

    Article  Google Scholar 

  30. Balberg, I., Binenbaum, N.: Scher and Zallen criterion: Applicability to composite systems. Phys. Rev. B 35, 8749–8752 (1987)

    Article  Google Scholar 

  31. RILEMCPC11.3: Absorption of water by immersion under vacuum. Mater. Struct. 17, 391–394 (1984)

    Google Scholar 

  32. Snyder, K.A., Feng, X., Keen, B.D., Mason, T.O.: Estimating the electrical conductivity of cement paste pore solutions from OH, K+ and Na+ concentrations. Cem. Concr. Res. 33, 793–798 (2003)

    Article  Google Scholar 

  33. Schwarz, N., Neithalath, N.: Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration. Cem. Concr. Res. 38, 429–436 (2008)

    Article  Google Scholar 

  34. Neithalath, N., Persun, J., Hossain, H.: Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cem. Concr. Res. 39(6), 473–481 (2009)

    Article  Google Scholar 

  35. Garboczi, E.J., Bentz, D.P.: Percolation aspects of cement paste and concrete: Properties and durability. High performance concrete: Research to practice. ACI Spec. Publ. 189, 147–164 (1999)

    Google Scholar 

  36. Bejaoui, S., Bary, B.: Modeling of the link between microstructure and effective diffusivity of cement pastes using a simplified composite model. Cem. Concr. Res. 37(3), 469–480 (2007)

    Article  Google Scholar 

  37. Bentz, D.P., Garboczi, E.J.: Percolation of phases in a three-dimensional cement paste microstructure. Cem. Concr. Res. 21, 325–344 (1991)

    Article  Google Scholar 

  38. McLachlan, D.S., Sauti, G.: The AC and DC conductivity of nanocomposites. J. Nanomater. (2007). doi:10.1155/2007/30389

    Google Scholar 

  39. Manchiryal, R.K.: Dielectric Response Based Characterization and Strength Prediction of Cementitious Materials. PhD Dissertation, Clarkson University, Potsdam, New York (2009)

  40. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor & Francis, Philadelphia (1992)

    Google Scholar 

  41. Zhang, J., Li, Z.: Application of GEM equation in microstructure characterization of cement-based materials. J. Mater. Civ. Eng. 21(11), 648–656 (2009)

    Article  Google Scholar 

  42. Wu, J., McLachlan, D.S.: Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride. Phys. Rev. B 56, 1236–1247 (1997)

    Article  Google Scholar 

  43. Persun, J.D.: Electrical Impedance Based Strength Predictions of Concretes and Validation of a Sensing Tool for Fresh Properties. MS Thesis, Clarkson University, Potsdam, New York (2010)

  44. Nover, G., Heikamp, S., Meurer, H.J., Freund, D.: In situ electrical conductivity and permeability of mid-crustal rocks from the KTB drilling: Consequences for high conductive layers in the earth crust. Surv. Geophys. 19, 73–85 (1998)

    Article  Google Scholar 

  45. Bentz, D.P., Hwang, J.T.G., Hagwood, C., Garboczi, E.J., Snyder, K.A., Buenfeld, N., Scrivener, K.L.: Interfacial zone percolation in concrete: Effects of interfacial zone thickness and aggregate shape. Microstructure of cement-based systems, bonding and interfaces in cementitious materials. Mater. Res. Soc. 370, 437–442 (1995)

    Article  Google Scholar 

  46. Winslow, D.N., Cohen, M.D., Bentz, D.P., Snyder, K.A., Garboczi, E.J.: Percolation and pore structure in mortars and concrete. Cem. Concr. Res. 24(1), 25–37 (1994)

    Article  Google Scholar 

  47. Tank, R.C., Carino, H.J.: Rate constant functions for strength development of concrete. ACI Mater. J. 88(1), 74–83 (1991)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for the conduct of this work from the Advanced Transportation Technologies program of New York State Energy Research and Development Authority (NYSERDA) through projects 9613 and 10719. The contents of this paper reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein, and do not necessarily reflect the views and policies of the funding agency, nor do the contents constitute a standard, specification, or a regulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanan Neithalath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neithalath, N., Persun, J. & Manchiryal, R.K. Electrical conductivity based microstructure and strength prediction of plain and modified concretes. Int J Adv Eng Sci Appl Math 2, 83–94 (2010). https://doi.org/10.1007/s12572-011-0023-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-011-0023-1

Keywords

Navigation