Skip to main content
Log in

PECVD silicon carbide surface micromachining technology and selected MEMS applications

  • Original Research
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with integrated circuits. In this paper we present a generic surface micromachining technology developed using a stress-optimised PECVD SiC as the structural and encapsulation material for MEMS. An overview of selected MEMS applications realised, at DIMES Technology Center (DTC) of TU Delft, using the PECVD SiC surface micromachining technology is provided. Presented MEMS examples include—a pressure sensor, wafer-level thin-film packaging, RF switch and accelerometers. Potential applications for the presented technology include automotive, industrial and medical systems, where devices are often subjected to harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jiang, L., Cheung, R.: A review of silicon carbide development in MEMS applications. Int. J. Comput. Mater. Sci. Surf. Eng. (IJCMSSE) 2(3/4), 225–240 (2009)

    Google Scholar 

  2. Flannery, A.F., Mourlas, N.J., Storment, C.W., Tsai, S., Tan, S.H., Kovacs, G.T.A.: PECVD silicon carbide for micromachined transducers. In: Proceedings of the 9th International Conference on Solid State Sensors and Actuators (TRANSDUCERS ’97), pp. 217–220. Chicago, USA (1997)

  3. Flannery, A.F., Mourlas, N.J., Storment, C.W., Tsai, S., Tan, S.H., Heck, J., Monk, D., Kim, T., Gogoi, B., Kovacs, G.T.A.: PECVD silicon carbide as a chemically resistant material for micromachined transducers. Sens. Actuators A 70, 48–55 (1998)

    Article  Google Scholar 

  4. Mehregany, M., Zorman, C.A.: SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355356, 518–524 (1999)

    Article  Google Scholar 

  5. Sarro, P.M.: Silicon carbide as a new MEMS technology. Sens. Actuators A 82, 210–218 (2000)

    Article  Google Scholar 

  6. Pham, H.T.M.: PECVD silicon carbide: a promising structural material for surface micromachined devices. PhD Dissertation, Delft University of Technology (TU Delft), The Netherlands (2004)

  7. Sarro, P.M., deBoer, C.R., Korkmaz, E., Laros, J.M.W.: Low-stress PECVD SiC thin films for IC-compatible microstructures. Sens. Actuators A 67, 175–180 (1998)

    Article  Google Scholar 

  8. Pakula L.S., Yang H., Pham H.T.M., French P.J., Sarro P.M.: Fabrication of a CMOS compatible pressure sensor for harsh environments. J. Micromech. Microeng. 14, 1478–1483 (2004)

    Article  Google Scholar 

  9. Rajaraman, V., Pakula, L.S., Pham, H.T.M., Sarro, P.M., French, P.J.: Robust wafer-level thin-film encapsulation of microstructures using low stress PECVD silicon carbide. In: Proceedings of the 22nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2009), pp. 140–143. Sorrento, Italy (2009)

  10. Rajaraman, V., de Graaf, G., French, P.J., Makinwa, K.A.A., Wolffenbuttel, R.F.: Silicon carbide thin-film encapsulation of planar thermo-electric infrared (IR) detectors—for an IR microspectrometer. In: Proceedings of the 21st Micromechanics and Microsystems Europe Workshop (MME 2010), pp. 20–23. Enschede, The Netherlands (2010)

  11. Pakula, L.S., French, P.J., Yang, H.: Low voltage, high speed RF switch with high switching capacitance ratio. In: Proceedings of the 4th IEEE International Conference on Sensors (IEEE Sensors 2005), pp. 480–483. Irvine, CA, USA (2005)

  12. Pakula, L.S., Yang, H., French, P.J.: 3-D silicon carbide surface micromachined accelerometer compatible with CMOS processing. In: Proceedings of the 7th IEEE International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM 2008), pp. 227–230. Smolenice, Slovakia (2008)

  13. Kovacs, G.T.A., Maluf, N.I., Petersen, K.E.: Bulk micromachining of silicon. Proc. IEEE 86(8), 1536–1551 (1998)

    Article  Google Scholar 

  14. Rajaraman, V., Makinwa, K.A.A., French, P.J.: DRIE and bonding assisted low cost MEMS processing of in-plane HAR inertial sensors. In: Proceedings of the 7th IEEE International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM 2008), pp. 327–330. Smolenice, Slovakia (2008)

  15. Esashi, M.: Wafer level packaging of MEMS. J. Micromech. Microeng. 18, 1–13 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of Delft Institute of Microsystems and Nanoelectronics (DIMES) Technology Centre, TU Delft, NL, for their assistance during microfabrication, in particular, Mr. Charles de boer and Mr. Mario Laros. Special thanks are due to—Dr. Gregory Pandraud and Dr. Hoa T.M. Pham (TU Delft, NL) for helpful discussions, and Prof. Dr. Ronald Dekker (Philips Research/TU Delft, NL) and Prof. Dr. Kofi Makinwa (TU Delft, NL) for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayekumar Rajaraman.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12572-011-0035-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajaraman, V., Pakula, L.S., Yang, H. et al. PECVD silicon carbide surface micromachining technology and selected MEMS applications. Int J Adv Eng Sci Appl Math 2, 28–34 (2010). https://doi.org/10.1007/s12572-010-0020-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-010-0020-9

Keywords

Navigation