Skip to main content
Log in

Abstract

Squeeze flow between parallel disks of a Newtonian fluid with variable viscosity is studied using a lubrication approximation. Analytical results are obtained for circumstances in which the viscosity distribution and instantaneous plate velocity and separation are specified. Equations describing the convection of viscosity and the time dependence of the plate separation are developed, although explicit solutions could not be obtained. Our analysis is extended to include two immiscible fluid layers, each having a different but uniform viscosity. As expected, all results reduce to the classical lubrication results for constant viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephan J. and Sitzungber K., Versuche ber die scheinbare adhesion, Akad. Wiss. Math. Natur. Wien, 69(2), 713–735 (1874).

    Google Scholar 

  2. Scott J.R., Theory and application of the parallel-plate plastometer, part 2, Trans. Inst. Rubber Ind., 10, 418–493 (1935).

    Google Scholar 

  3. Leider P.J. and Bird R.B., Squeezing flow between parallel disks. I. Theoretical analysis, Ind. Eng. Chem., Fundamental, 13(4), 336–341 (1974).

    Article  Google Scholar 

  4. McClelland M.A. and Finlayson B.A., Squeezing flow of highly viscous polymers, J. Rheol., 32(2), 101–133 (1988).

    Article  Google Scholar 

  5. Phan-Thien N. and Low H.T., Squeeze-film flow of a viscoelastic fluid a lubrication model, J. Non-Newtonian Fluid Mech., 28(2), 129–148 (1988).

    Article  MATH  Google Scholar 

  6. Winther G., Almdal K. and Kramer O., Determination of polymer melt viscosity by squeezing flow with constant plate velocity, J. Non-Newtonian Fluid Mech., 39(2), 119–136 (1991).

    Article  Google Scholar 

  7. Sus D., Relaxations- und Normalspannungseffekte in der Quetschströmung, Rheol. Acta, 23(5), 489–496 (1984).

    Article  Google Scholar 

  8. Oliver D.R., Influence of fluid inertia, viscosity and extra stress on the load bearing capacity of a squeeze film of oil, Appl. Sci. Res., 35(2–3), 217–235 (1979).

    Article  MATH  Google Scholar 

  9. Gordon G.V. and Shaw M.T., Computer Programs for Rheologists (Hanser, Munich, 1994).

    Google Scholar 

  10. Dienes G.J. and Klemm H.F., Theory and application of the parallel plate plastometer, J. Appl. Phys., 17(6), 458–472 (1946).

    Article  Google Scholar 

  11. Leider P.J., Squeezing flow between parallel disks. II. Experimental results, Ind. Eng. Chem, Fundamental, 13(4), 342–346 (1974).

    Article  Google Scholar 

  12. Shaw M.T., Melt characterization of ultra high molecular-weight polyethylene using squeeze flow, Polym. Eng. Sci., 17(4), 266–268 (1977).

    Article  Google Scholar 

  13. Kataoka T., Kitano T. and Nishimura T., Utility of parallel-plate plastometer for rheological study of filled polymer melts, Rheol. Acta, 17(6), 626–631 (1978).

    Article  Google Scholar 

  14. Chatraei S. and Macosko C.W., Lubricated squeezing flow: A new biaxial extensional rheometer, J. Rheol., 25(4), 433–443 (1981).

    Article  Google Scholar 

  15. Lee S.J., Denn M.M., Crochet M.J. and Metzner A.B., Compressive flow between parallel disks: I. Newtonian fluid with a transverse viscosity gradient, J. Non-Newtonian Fluid Mech., 10(1–2), 3–30 (1982).

    Article  MATH  Google Scholar 

  16. Zhang W., Silvi N. and Vlachopoulos J., Modeling and experiments of squeezing flow of polymer melts, Int. Polymer Processing, 10(2), 155–164 (1995).

    Google Scholar 

  17. Papanastasiou A.C., Macosko C.W. and Scriven L.E., Analysis of lubricated squeezing flow, Int. J. Num. Meth. Fluids, 6(11), 819–839 (1986).

    Article  MATH  Google Scholar 

  18. Laun H.M., Rady M. and Hassager O., Analytical solutions for squeeze flow with partial wall slip, J. Non-Newtonian FluidMech., 81(1–2), 1–15 (1999).

    Article  MATH  Google Scholar 

  19. Mavrovouniotis, G.M. and Brenner H., A micromechanical investigation of interfacial transport processes: I. Interfacial conservation equations, Phil. Trans. Roy. Soc., A345(1675), 165–207 (1993).

    Google Scholar 

  20. Mavrovounitious G.M., Brenner H., Edwards D.A. and Ting L., A micromechanical investigation of interfacial transport processes: II. Interfacial constitutive equations, Phil. Trans. Roy. Soc., A345(1675) 209–228 (1993).

    Google Scholar 

  21. Edwards D.A., Brenner H. and Wasan D.T., Interfacial Transport Processes and Rheology (Butterworth-Heinemann, Boston, MA, 1991).

    Google Scholar 

  22. Anderson D.M., McFadden G.B. and Wheeler A.A., Diffuse interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30, 139–165 (1998).

    Article  MathSciNet  Google Scholar 

  23. Landau L.D. and Lifshitz E.M., Fluid Mechanics (Addison-Wesley, London, 1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lino A. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, L.A., Brenner, H. Squeeze flow of a nonconstant-viscosity fluid. Int J Adv Eng Sci Appl Math 1, 85–97 (2009). https://doi.org/10.1007/s12572-010-0005-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-010-0005-8

Keywords

Navigation