Plant factories in the water-food-energy Nexus era: a systematic bibliographical review

Abstract

In recent years, several global issues related to food waste, increasing CO2 emissions, water pollution, over-fertilization, deforestation, loss of arable land, food security, and energy storage have emerged. Climate change urgently needs to be addressed from an ecological and social perspective. Implementing new indoor urban vertical farming (IUVF) operations is one way to combat the above-mentioned issues as well as foodborne illnesses, scarcity of drinking water, and more crop failure due to infection from plant pathogens and insect pests. A promising production mode is plant factories (PFs), which are indoor plant production systems completely isolated from outside environment. This paper mainly focuses on the comprehensive review of scientific papers in order to analyse the different applications of urban farming (UF) based on three different dimensions: a) the manufacturing techniques and equipment used; b) the energy that these systems require, the distribution of energy, and ways to minimize the energy-related cost; and c) the technological innovations applied in order to optimize the cultivation possibilities of IUVF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adams, S., & Boulard, T. (2007). Innovative technologies for an efficient use of energy. Acta Horticulturae, 801(1), 49–62.

    Google Scholar 

  2. Al-Chalabi, M. (2015). Vertical farming: Skyscraper sustainability? Sustainable Cities and Society. Vol., 18, 74–77. https://doi.org/10.1016/j.scs.2015.06.003.

    Article  Google Scholar 

  3. Al-Kodmany, K. (2018). The Vertical Farm: A Review of Developments and Implications for the Vertical City (p. 2018). Southampton, UK: WIT Press.

    Google Scholar 

  4. Avgoustaki, D. D. (2019). Optimization of Photoperiod and Quality Assessment of Basil Plants Grown in a Small-Scale Indoor Cultivation System for Reduction of Energy Demand. Energies, 12, 3980.

    CAS  Google Scholar 

  5. Badami, M. G., & Ramankutty, N. (2015). Urban agriculture and food security: A critique based on an assessment of urban land constraints. Global Food Security, 4, 8–15. https://doi.org/10.1016/j.gfs.2014.10.003.

    Article  Google Scholar 

  6. Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., Wohlleb, G. M., & Halden, R. U. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International journal of environmental research and public health, 12(6), 6879–6891.

    PubMed  Google Scholar 

  7. Barthel, S., & Isendahl, C. (2013). Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecological Economics, 86, 224–234. https://doi.org/10.1016/j.ecolecon.2012.06.018.

    Article  Google Scholar 

  8. Becerril, H., & de los Rios, I. (2016). Energy Efficiency Strategies for Ecological Greenhouses: Experiences from Murcia (Spain). Energies, 9(866), 1–23. https://doi.org/10.3390/en9110866.

    Article  Google Scholar 

  9. Benisa, K., Turanb, I., Reinhartb, C., & Ferrão, P. (2017). Putting rooftops to use – A Cost-Benefit Analysis of food production vs. energy generation under Mediterranean climates. Cities. https://doi.org/10.1016/j.cities.2018.02.011.

  10. Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13–26.

    Google Scholar 

  11. Besthorn, F. H. (2013). Vertical Farming: Social Work and Sustainable Urban Agriculture in an Age of Global Food Crises. Australian Social Work, 66(2), 187–203. https://doi.org/10.1080/0312407X.2012.716448.

    Article  Google Scholar 

  12. Blasco, X., Mart, M., Herrero, J. M., Ramos, C., & Sanchis, J. (2007). Model-based predictive control of greenhouse climate for reducing energy and water consumption. Computers and Electronics in Agriculture, 55, 49–70.

  13. Boulard, T., Roy, J. C., Pouillard, J. B., Fatnassi, H., & Grisey, A. (2017). Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Science Engineering, 158, 110–133.

    Google Scholar 

  14. Burr, J. F., Hernández, R., Kubota, C., Currey, C. J., Both, A. J., Bourget, C. M., Morrow, R. C., Meng, Q., & Runkle, E. S. (2015). Light-Emitting Diodes in Horticulture. Horticultural Reviews, 43, 1–88.

    Google Scholar 

  15. Canakci, M., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8–9), 1243–1256. https://doi.org/10.1016/j.energy.2005.05.021.

    Article  Google Scholar 

  16. Carey, R., Larsen, K., Sheridan, J., & Candy, S. (2016). Melbourne’s food future: Planning a resilient city foodbowl. Victorian Eco-Innovation Lab: The University of Melbourne http://hdl.handle.net/11343/121776.

    Google Scholar 

  17. Carlini, M., Honorati, T., & Castellucci, S. (2012). Photovoltaic greenhouses comparison of optical and thermal behavior for energy savings. Mathematical Problems in Engineering.

  18. Chel, K. (2010). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 31(1), 91–118. https://doi.org/10.1051/agro/2010029 hal-00930477.

    Article  Google Scholar 

  19. Chen, J., Xu, F., Tan, D., Shen, Z., Zhang, L., & Ai, Q. (2014). A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Applied Energy; Vol., 141, 106–118. https://doi.org/10.1016/j.apenergy.2014.12.026.

    Article  Google Scholar 

  20. Cicekli, M., & Barlas, N. T. (2014). Transformation of today greenhouses into high technology vertical farming systems for metropolitan regions. Journal of Environmental Protection and Ecology, 15(4), 1779–1785.

    Google Scholar 

  21. Cuce, E., Harjunowibowo, D., & Cuce, P. M. (2016). Renewable and sustainable energy savings strategies for greenhouse systems: A comprehensive review. Renewable and Sustainable Energy Reviews, 64, 34–59.

    CAS  Google Scholar 

  22. Cunningham Yukech, C. M. (2017). Biomonapp’s Sensing & Monitoring of Plants/Fish & Water Quality for Ag Biotech & Bio Monitoring Environments. Proceedings of The 8th International Multi- Conference on Complexity, Informatics and Cybernetics (IMCIC 2017); 386–391.

  23. Delaide, B., Delhaye, G., Dermience, M., Gott, J., Soyeurt, H., & Jijakli, M. H. (2017). Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system. Aquacultural Engineering. Vol., 78, 130–139.

    Google Scholar 

  24. Demicco, F., Seferis, J., Bao, Y., & Scholz, M. E. (2014). The Eco-Restaurant of the Future: A Case Study. Journal of Foodservice Business Research, 17(4), 363–368.

    Google Scholar 

  25. Despommier, D. (2009). The Rise of Vertical Farms. Scientific American, 301(5), 80–87.

    PubMed  Google Scholar 

  26. Despommier, D. (2010). The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal of Consumer Protection and Food Safety; Vol., 6, 233–236.

    Google Scholar 

  27. Despommier, D. (2012). Advantages of the Vertical Farm. Chapter, 16, 259–275. https://doi.org/10.1007/98-1-4419-0745-5.

    Article  Google Scholar 

  28. Despommier, D. (2013). Farming up the city: the rise of urban vertical farm. Trends in Biotechnology, 31(7), 388–389.

    CAS  PubMed  Google Scholar 

  29. Dieleman, J. A., & Hemming, S. (2011). Energy Saving: from Engineering to Crop Management. High Technology for Greenhouse Systems, 65–74.

  30. Dyer, J. A., & Desjardins, R. L. (2006). An Integrated Index of Electrical Energy Use in Canadian Agriculture with Implications for Greenhouse Gas Emissions. Biosystems Engineering, 95(3), 449–460. https://doi.org/10.1016/j.biosystemseng.2006.07.013.

    Article  Google Scholar 

  31. Farzaneh-Gord, M., Arabkoohsar, A., Deymi, M., Bayaz, D., & Khoshnevis, A. B. (2013). New method for applying solar energy in greenhouses to reduce fuel consumption. Int J Agric & Biol Eng, 2013., 6(4), 64–75.

  32. Ferentinos, K. P., Katsoulas, N., Tzounis, A., Kittas, C., & Bartzanas, T. (2015). A climate control methodology based on wireless sensor networks in greenhouses. Acta Horticulturae; Vol., 1107, 75–82 https://www.researchgate.net/publication/288040808.

    Google Scholar 

  33. Fitz-Rodríguez, E., Kubota, C., Giacomelli, G. A., Tignor, M. E., Wilson, S. B., & McMahon, M. (2010). Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Computers and Electronics in Agriculture; Vol., 70, 105–116. https://doi.org/10.1016/j.compag.2009.09.010.

    Article  Google Scholar 

  34. Fuldauer, L., Parker, B. M., Yaman, R., & Borrion, A. (2018). Managing anaerobic digestate from food waste in the urban environment: Evaluating the feasibility from an interdisciplinary perspective. Journal of Cleaner Production; Vol., 185, 929–940.

    Google Scholar 

  35. Ganguly, A., Misra, D., & Ghosh, S. (2010). Modeling and analysis of solar photovoltaic- electrolyzer-fuel cell hybrid power system integrated with a floriculture greenhouse. Energy and Buildings, 42(11), 2036–2043.

    Google Scholar 

  36. Graamans, L., van den Dobbelsteen, A., Meinen, E., Stanghellini, C. (2017). Plant factories: crop transpiration and energy balance. Agricultural Systems 153:138–147.

  37. Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I., & Stanghellini, C. (2018). Plant factories versus greenhouses: Comparison of resource use efficiency, Agricultural Systems. Vol., 160, 31–43. https://doi.org/10.1016/j.agsy.2017.11.003.

    Article  Google Scholar 

  38. Ha, T., Lee, I., Kwon, K., & Hong, S. (2015). Computation and field experiment validation of greenhouse energy load using building energy simulation model. Int J Agric & Biol Eng, 8(6), 116–127 http://www.ijabe.org.

    Google Scholar 

  39. Haque, M. S., de Sousa, A., Soares, C., Kjaer, K. H., Fidalgo, F., Rosenqvist, E., & Ottosen, C. (2017). Temperature Variation under Continuous Light Restores Tomato Leaf Photosynthesis and Maintains the Diurnal Pattern in Stomatal Conductance. Frontiers in Plant Science; Vol., 8, 1–13.

    Google Scholar 

  40. Harbick, K., & Albright, L. D. (2016). Comparison of energy consumption: greenhouses and plant factories. Acta Horticulture, 285–292. https://doi.org/10.17660/ActaHortic.2016.1134.38.

  41. Hassanien, R. H. E., Li, M., Dong, L., & W. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews; Vol., 54, 989–1001. https://doi.org/10.1016/j.rser.2015.10.095.

  42. Hatirli, S. A., Ozkan, B., & Fert, C. (2005). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy; Vol., 31, 427–438. https://doi.org/10.1016/j.renene.2005.04.007.

    Article  Google Scholar 

  43. Higashi, T., Nishikawa, S., Okamura, N., & Fukuda, H. (2015). Evaluation of Growth under Non-24 h Period Lighting Conditions in Lactuca sativa L. Environ. Control Biol. Vol., 53(1), 7–12. https://doi.org/10.2525/ecb.53.7.

    CAS  Article  Google Scholar 

  44. Huang, L. C., Chen, Y. H., Chen, Y. H., Wang, C. F., & Hu, M. C. (2018). Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems. Sustainability, 10(446), 1–12. https://doi.org/10.1016/j.rser.2016.12.020.

    CAS  Article  Google Scholar 

  45. Ikkonen, E. N., Shibaeva, T. G., Rosenqvist, E., & Ottosen, C. O. (2015). Daily temperature drop prevents inhibition of photosynthesis in tomato plants under continuous light. Photosynthetica, 53(3), 389–394. https://doi.org/10.1007/s11099-015-0115-4.

    CAS  Article  Google Scholar 

  46. Ismail F. and Gryzagoridis J. (2013). Sustainable development using renewable energy to boost aquaponics food production in needy communities. Cape Peninsula University Research Fund (URF).

  47. Janjai, S., Intawee, P., Kaewkiew, J., Sritus, C., & Khamvongsa, V. (2010). A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic. Renewable Energy, 36, 1053–1062. https://doi.org/10.1016/j.renene.2010.09.008.

    Article  Google Scholar 

  48. Janka, E., Körner, O., Rosenqvist, E., & Ottosen, C. O. (2016). A coupled model of leaf photosynthesis, stomatal conductance, and leaf energy balance for chrysanthemum (Dendranthema grandiflora). Computers and Electronics in Agriculture; Vol., 123, 264–274. https://doi.org/10.1016/j.compag.2016.02.022.

    Article  Google Scholar 

  49. Katsuyuki, T., Yoshinori, S., Rikuya, O., Takamasa, O., Koichi, T., & Takuya, F. (2018). Development of automatically controlled corona plasma system for inactivation of pathogen in hydroponic cultivation medium of tomato. Journal of Electrostatics; Vol., 91, 61–69.

    Google Scholar 

  50. Khandaker, M., & Kotzen, B. (2018). The potential for combining living wall and vertical farming systems with aquaponics with special emphasis on substrates. Aquaculture Research, 49(4), 1454–1468.

    Google Scholar 

  51. Khattab, N. M., Badr, M. A., Maalawi, K. Y., El Shenawy, E. T., El Ghetany, H. H., & Ibrahim, M. M. (2016). Hybrid renewable energy system for water desalination: A case study for small green house hydroponic cultivation in Egypt. ARPN Journal of Engineering and Applied Sciences, 11(21), 12380–12390.

    CAS  Google Scholar 

  52. Kozai, T. (2013). Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory, Proceedings of the Japan Academy. Series B, 89(10), 447–461. https://doi.org/10.2183/pjab.89.447.

    Article  Google Scholar 

  53. Kozai, T. (2016). Chapter 16 – Plant production process, floor plan, and lay out of PFAL. In T. K. N. Takagaki (Ed.), Plant Factory (pp. 203–212). San Diego: Academic Press.

    Google Scholar 

  54. Kozai, T., Niu, G., & Takagaki, M. (Eds.). (2015). Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production (1st ed.) Academic Pr.

    Google Scholar 

  55. Kubo, H. (2016). A Possibility of Open Zero Energy Plant Factory. Electronics Goes Green 2016+; 1–8; ISBN 978–3–00-053763-9.

  56. Langelaan, H. C., & Silva, F. P. D. (2013). Technology options for feeding 10 billion people. Food Engineering, 1(1), 1–16.

    Google Scholar 

  57. Liaros, S., Botsis, K., & Xydis, G. (2016). Technoeconomic evaluation of urban plant factories: The case of basil (Ocimum basilicum). Science of the Total Environment, 554–555, 218–227. https://doi.org/10.1016/j.scitotenv.2016.02.174.

    CAS  Article  Google Scholar 

  58. Love, D. C., Uhl, M. S., & Genelloa, L. (2015). Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland. United States. Aquacultural Engineering; Vol., 68, 19–27.

    Google Scholar 

  59. Ma, E. Z. and Chan, M. (2016). A sustainable strategy of farming in radioactive contaminated farmland: A case study in Fukushima. GHTC 2016 – IEEE Global Humanitarian Technology Conference: Technology for the Benefit of Humanity, Conference Proceedings; 7–13.

  60. Mahadi, M. R., Thorp, K. R., Ismail, I. W., Kelly, R., Ahmad, D., Man, H. C. (2017). Plant Engineering. INTECH; Chapter 9: Adaptive Management Framework for Evaluating and Adjusting Microclimate Parameters in Tropical Greenhouse Crop Production Systems; 167–191; https://doi.org/10.5772/intechopen.69972.

  61. Manos, D. P., Xydis, G., Hydroponics: Are we moving towards that direction only because of the Environment? A Discussion on Forecasting and a Systems Review, Environmental Science and Pollution Research, (2019) 26: 12662–12672, https://doi.org/10.1007/s11356-019-04933-5, 2019.

  62. Marucci, A., Monarca, D., Cecchini, M., Colantoni, A., Manzo, A., & Cappuccini, A. (2012). The semitransparent photovoltaic films for Mediterranean greenhouse: A new sustainable technology. Mathematical Problems in Engineering.

  63. Mekhilef, S., Faramarzi, S. Z., Saidur, R., & Salam, Z. (2013). The application of solar technologies for sustainable development of agricultural sector. Renewable and Sustainable Energy Reviews, 18(2013), 583–594.

  64. Mendez Perez, V. (2014). Study of the sustainability issues of food production using vertical farm methods in an urban environment within the state of Indiana. A Thesis Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements (Master Thesis).

  65. Murayama, S., Tanimoto, M., Okoso, K., and Maeno, S. (2016). A Possibility of Open Zero Energy Plant Factory. Electronics Goes Green 2016+; 1–8.

  66. Namkung, Y. (2017). Are Consumers Willing to Pay more for Green Practices at Restaurants? Journal of Hospitality & Tourism Research, 41(3), 329–356. https://doi.org/10.1177/1096348014525632.

    Article  Google Scholar 

  67. Nikas, E., Sotiropoulos, A., & Xydis, G. A. (2018). Spatial Planning of Biogas Processing Facilities in Greece: The Sunflower's Capabilities and the Waste-to-Bioproducts Approach. Chemical Engineering Research and Design, (Special Issue: Energy Systems Engineering), 131, 234–244. https://doi.org/10.1016/j.cherd.2018.01.004.

    CAS  Article  Google Scholar 

  68. Ntinas, G. K., Fragos, V. P., & Nikita-Martzopoulou, C. (2014). Thermal analysis of a hybrid solar energy saving system inside a greenhouse. Energy Conversion and Management; Vol., 81, 428–439.

    CAS  Google Scholar 

  69. Omer, A. M. (2008). Green energies and the environment. Renewable and Sustainable Energy Reviews, 12(7), 1789–1821.

    CAS  Google Scholar 

  70. Pahlavan, R., Omid, M., & Akram, A. (2012). The relationship between energy inputs and crop yield in greenhouse basil production. Journal of Agricultural Science and Technology, 14(6), 1243–1253.

    CAS  Google Scholar 

  71. Pérez, G., Coma, J., Martorell, I., Cabeza, L., & F. (2014). Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renewable and Sustainable Energy Reviews; Vol., 39, 139–165.

    Google Scholar 

  72. Pérez-Alonso, J., Pérez-García, M., Pasamontes-Romera, M., & Callejón-Ferre, A. J. (2012). Performance analysis and neural modelling of a greenhouse integrated photovoltaic system. Renewable and Sustainable Energy Reviews, 16(7), 4675–4685.

    Google Scholar 

  73. Pons, O., Nadal, A., Sanyé-Mengual, E., Llorach-Massana, P., Cuerva, E., Sanjuan-Delmàs, D., Muñoz, P., Oliver-Solà, J., Planas, C., & Rovira, M. R. (2015). Roofs of the future: rooftop greenhouses to improve buildings Metabolism. Procedia Engineering, 123, 441–448.

    Google Scholar 

  74. Ronay, K., & Dumitru, C. D. (2015). Hydroponic Greenhouse Energy Supply Based on Renewable Energy Sources. Procedia Technology, 19, 703–707.

    Google Scholar 

  75. Safikhani, T., Abdullah, A. M., Ossen, D. R., & Baharvand, M. (2014). A review of energy characteristic of vertical greenery systems. Renewable and Sustainable Energy Reviews, 40, 450–462. https://doi.org/10.1016/j.rser.2014.07.166.

    Article  Google Scholar 

  76. Sakamoto, M., & Suzuki, T. (2015). Effect of Root-Zone Temperature on Growth and Quality of Hydroponically Grown Red Leaf Lettuce (Lactuca sativa L. cv. Red Wave). American Journal of Plant Sciences, 6, 2350–2360. https://doi.org/10.4236/ajps.2015.614238.

  77. Sanjuan-Delmás, D., Llorach-Massana, P., Nadal, A., Ercilla-Montserrat, M., Muñoz, P., Montero, J. I., Josa, A., Gabarrell, X., & Rieradevall, J. (2018). Environmental assessment of an integrated rooftop greenhouse for food production in cities. Journal of Cleaner Production, 177, 326–337.

    Google Scholar 

  78. Shamshiri, R. R., Shamshiri, R. R., Ting, K. C., Thorp, K. R., Hameed, I. A., Weltzien, C., Ahmad, D., & Shad, Z. M. (2018). Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int J Agric & Biol Eng, 11(1), 1–22.

    Google Scholar 

  79. Siregar, S., Sari, M. I., & Jauhari, R. (2016). Automation system hydroponic smart solar power plant unit. Jurnal Teknologi, 78(5–7), 55–60.

    Google Scholar 

  80. Sonneveld, P. J., Swinkels, G. L. A. M., Campen, J., Van Tuijl, B. A. J., Janssen, H. J. J., & Bot, G. P. A. (2010). Performance results of a solar greenhouse combining electrical and thermal energy production. Biosystems Engineering, 106(1), 48–57.

    Google Scholar 

  81. Sotiropoulos, Α., Xydis, G., Kontogianni, N., & Vakalis, S. (2019). Results on the implementation of an innovative dehydrated biological waste to ethanol management scheme. International Journal of Environmental Science and Technology, 16, 4967. https://doi.org/10.1007/s13762-018-2135-7.

    CAS  Article  Google Scholar 

  82. Speetjens, S. L., Stigter, J. D., & van Straten, G. (2009). Towards an adaptive model for greenhouse control. Computers and Electronics in Agriculture, 67(1–2), 1–8.

    Google Scholar 

  83. Story, D., & Kacira, M. (2015). Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Machine Vision and Applications, 26, 495–506. https://doi.org/10.1007/s00138-015-0670-5.

    Article  Google Scholar 

  84. Tong, Y., Kozai, T., Nishioka, N., & Ohyama, K. (2012). Reductions In Energy Consumption And CO2 Emissions For Greenhouses Heated With Heat Pumps. Structures & Environment Division of ASABE, 28(3), 1–6.

    CAS  Google Scholar 

  85. Vadiee, A., & Martin, V. (2012). Energy management in horticultural applications through the closed Greenhouse concept, state of the art. Renewable and Sustainable Energy Reviews, 16, 5087–5100. https://doi.org/10.1016/j.rser.2012.04.022.

    Article  Google Scholar 

  86. Vadiee, A., & Martin, V. (2013a). Thermal energy storage strategies for effective closed greenhouse design. Applied Energy, 109, 337–343.

    Google Scholar 

  87. Vadiee, A., & Martin, V. (2013b). Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building. Applied Energy, 102, 1256–1266. https://doi.org/10.1016/j.apenergy.2012.06.051.

    Article  Google Scholar 

  88. Vadiee, A., & Martin, V. (2014). Energy management strategies for commercial greenhouses. Applied Energy, 114, 880–888.

    Google Scholar 

  89. Van Beveren, P. J. M., Bontsema, J., van Straten, G., & van Henten, E. J. (2015). Optimal control of greenhouse climate using minimal energy and grower defined bounds. Applied Energy, 159, 509–519.

    Google Scholar 

  90. Van Ginkel, S. W., Igou, T., & Chen, Y. (2017). Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA. Resources, Conservation and Recycling, 122, 319–325. https://doi.org/10.1016/j.resconrec.2017.03.003.

    Article  Google Scholar 

  91. Van Straten, G., & Van Henten, E. J. (2010). Optimal greenhouse cultivation control: Survey and perspectives. IFAC Proceedings Volumes, 3(1).

  92. Wahby, M., Soorati, M. D., Mammen, S. V., Hamann, H. (2015). Evolution of Controllers for Robot- Plant Bio-Hybdrids: A Simple Case Study Using a Model of Plant Growth and Motion. Workshop Computational Intelligence, Dortmund; 1–20.

  93. Walsh, F. (2009). Human-Animal Bonds I: The Relational Significance of Companion Animals. Family Process, 48(4), 462–480. https://doi.org/10.1111/j.1545-5300.2009.01296.x.

    Article  PubMed  Google Scholar 

  94. Wang, T., Wu, G., Chen, J., Cui, P., Chen, Z., Yan, Y., Zhang, Y., Li, M., Niu, D., Li, B., & Chen, C. (2017). Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renewable and Sustainable Energy Reviews; Vol., 70, 1178–1188.

    Google Scholar 

  95. Xu, J., Li, Y., Wang, R. Z., & Liu, W. (2014). Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application. Energy; Vol., 67, 63–73.

    Google Scholar 

  96. Xydis, G., Liaros, S., & Botsis, K. (2017). Energy demand analysis via small scale hydroponic systems in suburban areas – An integrated energy-food nexus solution. Science of the Total Environment; 1–9. https://doi.org/10.1016/j.scitotenv.2017.03.170.

  97. Zhang, L., Xu, P., Mao, J., Tang, X., Li, Z., & Shi, J. (2015). A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy; Vol., 156, 213–222. https://doi.org/10.1016/j.apenergy.2015.07.036.

    Article  Google Scholar 

  98. Zolnier, S., Lyra, G. B., & Gates, R. S. (2004). Evapotranspiration estimates for greenhouse lettuce using an intermitted nutrient film technique. Structures & Environment Division of ASAE, 47(1), 271–282.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to George Xydis.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avgoustaki, D.D., Xydis, G. Plant factories in the water-food-energy Nexus era: a systematic bibliographical review. Food Sec. 12, 253–268 (2020). https://doi.org/10.1007/s12571-019-01003-z

Download citation

Keywords

  • Plant factories
  • Urban farming
  • Water-food-energy Nexus
  • Energy demand