Skip to main content

Advertisement

Log in

The limits of increasing food production with irrigation in India

  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Growing populations and dietary shifts to include higher proportions of meat are projected to double global food demand by 2050. Previous global studies have proposed and evaluated possible solutions by closing agricultural yield gaps, defined as the difference between current and potential crop yields. We compliment previous studies by developing a method for more accurately calculating potential changes in cereal grain production under different irrigation scenarios, explicitly incorporating yield differences associated with different sources of irrigation. Irrigating with groundwater often leads to higher crop yields than irrigating with surface water because of the greater facility to tailor both the volumes of water and the timing of application. Two possible scenarios for increasing production in India are examined, the first where all non-irrigated fields are irrigated proportionally to the State-specific distribution of irrigation sources, and the second where all non-irrigated fields are irrigated with groundwater: Rice production increases by 14 and 25 % in scenarios 1 and 2 respectively, but wheat production increases by only 3 % in both scenarios. Increased irrigation water consumption from irrigating fields that are currently non-irrigated is estimated at 31 % for rice and 3 % for wheat using the Global Crop Water Model. A third scenario estimates the potential loss in production without the use of irrigation: rice would be 75 % and wheat 51 % of current production. Our methodology and results can help policy makers estimate the current and potential contribution of irrigation sources to agricultural production and food security in India and can with facility be applied elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Briscoe, J., & Malik, R. (2006). India’s water economy: Bracing for a turbulent future. New Delhi: Oxford University Press.

    Google Scholar 

  • Burke, J. (2002). Groundwater for irrigation: productivity gains and the need to manage hydro-environmental risk. Intensive use of groundwater: Challenges and opportunities, 59–91.

  • Central Ground Water Board. (2011). Dynamic ground water resources of India. Faridabad: Central Ground Water Board, Ministry of Water Resources, Government of India.

    Google Scholar 

  • Cheema, M., Immerzeel, W., & Bastiaanssen, W. (2014). Spatial quantification of groundwater abstraction in the Irrigated Indus Basin. Groundwater, 52(1), 25–36.

    Article  CAS  Google Scholar 

  • Custodio, E., & Llamas, M. (2003). Intensive use of groundwater: introductory considerations. Intensive use of groundwater: Challenges and opportunities, 3–12.

  • de Fraiture, C., Wichelns, D., Rockström, J., Kemp-Benedict, E., Eriyagama, N., Gordon, L. J., et al. (2007). Looking ahead to 2050: scenarios of alternative investment approaches. In D. Molden (Ed.), Water for food, water for life (Vol. Comprehensive assessment of water management in agriculture). London and Columbo: Earthscan and International Water Management Institute.

  • Dhawan, B. (1995). Groundwater depletion, land degradation, and irrigated agriculture in India. New Delhi.

  • Fishman, R. M., Siegfried, T., Raj, P., Modi, V., & Lall, U. (2011). Over-extraction from shallow bedrock versus deep alluvial aquifers: Reliability versus sustainability considerations for India’s groundwater irrigation. Water Resources Research, 47(6).

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations. (2009). Eradicating hunger and pushing economic and social growth. Rome: FAO.

    Google Scholar 

  • Gandhi, V. P., & Bhamoriya, V. (2011). Groundwater Irrigation in India. India Infrastructure Report, 90.

  • Garduño, H., Romani, S., Sengupta, B., Tuinhof, A., & Davis, R. (2011). India groundwater governance case study. doi:© World Bank. https://23.21.67.251/handle/10986/17242 License: CC BY 3.0 IGO.

  • Giordano, M. (2006). Agricultural groundwater use and rural livelihoods in sub-Saharan Africa: a first-cut assessment. Hydrogeology Journal, 14(3), 310–318.

    Article  Google Scholar 

  • Giordano, M., & Villholth, K. G. (2007). (Vol. 3): CABI.

  • Gleeson, T., & Wada, Y. (2013). Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environmental Research Letters, 8(4), 044010.

    Article  Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F., & van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Government of India (2011). Minor irrigation. http://www.archive.india.gov.in/sectors/water_resources/index.php?id=13. Accessed 19/05/2014.

  • Hernandez-Mora, N., Llamas, R., & Cortina, L. M. (2001). Misconceptions in Aquifer Over-Exploitation: Implications for Water Policy in Southern Europe. In Agricultural use of groundwater (pp. 107–126): Springer.

  • Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Hydrology and water resources of India-Volume 57 of Water science and technology library-Tributaries of Yamuna river. Springer, 350pp.

  • Janakarajan, S., & Moench, M. (2006). Are wells a potential threat to farmers’ well-being? Case of deteriorating groundwater irrigation in Tamil Nadu. Economic and Political Weekly, 41(37), 3977–3987.

    Google Scholar 

  • Kahnert, F., & Levine, G. (1993). Groundwater irrigation and the rural poor: Options for development in the gangetic basin:[papers were presented at the World Bank colloquium on groundwater irrigation, held April 12–14, 1989]. Washington: The World Bank.

    Book  Google Scholar 

  • Konikow, L. F. (2011). Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical Research Letters, 38(17).

  • Kumar, M. D., Sivamohan, M., & Narayanamoorthy, A. (2012). The food security challenge of the food-land-water nexus in India. Food Security, 4(4), 539–556.

    Article  Google Scholar 

  • Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., et al. (2010). Mind the gap: how do climate and agricultural management explain the ‘yield gap’of croplands around the world? Global Ecology and Biogeography, 19(6), 769–782.

    Article  Google Scholar 

  • Llamas, R., & Custodio, E. (2003). Intensive use of groundwater: a new situation which demands proactive action. Intensive use of groundwater: Challenges and opportunities (13–31).

  • Lowdermilk, M. K., Early, A. C., & Freeman, D. M. (1978). Farm irrigation constraints and farmers' responses: Comprehensive field survey in Pakistan. Fort Collins: Water Management Research Project, Engineering Research Center, Colorado State University.

    Google Scholar 

  • Lundqvist, J., de Fraiture, C., & Molden, D. (2008). Saving water: from field to fork. Curbing losses and wastage in the food chain.

  • Mall, R., Gupta, A., Singh, R., Singh, R., & Rathore, L. (2006). Water resources and climate change: an Indian perspective. Current Science, 90(12), 1610–1626.

    Google Scholar 

  • Meenakshi, J., Banerji, A., Mukherji, A., & Gupta, A. (2012). Impact of metering of tube wells on groundwater use in West Bengal, India.

  • Ministry of Agriculture (2001). Water requirement of crop in India. http://www.indiastat.com/table/agriculture/2/irrigation/145/7450/data.aspx. Accessed 19/05/2014.

  • Ministry of Agriculture (2011). State-wise distribution of number of operational holdings and area operated for all social groups in India (2010–2011). http://www.indiastat.com/table/agriculture/2/agriculturallandholdings20102011/718835/719086/data.aspx. Accessed 19/05/2014.

  • Ministry of Water Resources (2001a). 3rd census of minor irrigation schemes (2000–01): National level reports http://mowr.gov.in/micensus/mi3census/nt_level.htm. Accessed 19/05/2014.

  • Ministry of Water Resources (2001b). Reports ON 3rd Census of minor irrigation schemes (2000–2001). Accessed 19/05/2014.

  • Molden, D., Frenken, K., Barker, R., Fraiture, C. D., Mati, B., Svendsen, M., et al. (2007). Trends in water and agricultural development. In D. Molden (Ed.), Water for food, water for life: A comprehensive assessment of water management in agriculture (pp. 57–89). London: Earthscan.

    Google Scholar 

  • Monfreda, C., Ramankutty, N., & Foley, J. A. (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles, 22(1).

  • Mukherji, A. (2006). Political ecology of groundwater: the contrasting case of water-abundant West Bengal and water-scarce Gujarat, India. Hydrogeology Journal, 14(3), 392–406.

    Article  Google Scholar 

  • Mukherji, A. (2012). Rural electrification for a second green revolution in West Bengal [India]. IWMI-Tata Program and Water Policy Highlights.

  • Mukherji, A., Shah, T., & Banerjee, P. (2012a). Kick-starting a second green revolution in Bengal [India]. IWMI-Tata Program and Water Policy Highlights.

  • Mukherji, A., Shah, T., & Giordano, M. (2012b). Managing energy-irrigation nexus in India: a typology of state interventions.

  • Nair, N., & Shah, T. (2012). The other side of India's electricity-groundwater nexus: the disruptive impact of tube well irrigation on rural development in western India. IWMI-Tata Program and Water Policy Highlights.

  • Portmann, F. T., Siebert, S., & Döll, P. (2010). MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global biogeochemical cycles, 24(GB1011), doi:10.1029/2008GB003435.

  • Ribot, J. C., Magalhães, A. R., & Panagides, S. (1996). Climate variability, climate change and social vulnerability in the semi-arid tropics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., et al. (2009). A safe operating space for humanity. Nature, 461(7263), 472–475.

    Article  PubMed  Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999–1002.

    Article  CAS  PubMed  Google Scholar 

  • Seckler, D. W. (1998). World water demand and supply, 1990 to 2025: Scenarios and issues (Vol. 19). Colombo: International Irrigation Management Institute (IIMI); IWMI.

    Google Scholar 

  • Shah, T. (1993). Groundwater markets and irrigation development. Oxford: Oxford University Press.

    Google Scholar 

  • Shah, T. (2009). Climate change and groundwater: India's opportunities for mitigation and adaptation. Environmental Research Letters, 4(3), 035005.

    Article  Google Scholar 

  • Shah, T. (2010). Taming the anarchy: Groundwater governance in South Asia. Washington: Resources for the Future.

  • Shah, T., Molden, D., Sakthivadivel, R., & Seckler, D. (2000). Groundwater: Overview of opportunities and challenges. Colombo: IWMI.

    Book  Google Scholar 

  • Shah, T., Roy, A. D., Qureshi, A. S., & Wang, J. Sustaining Asia’s groundwater boom: An overview of issues and evidence. In Natural Resources Forum, 2003 (Vol. 27, pp. 130–141, Vol. 2): Wiley Online Library

  • Shah, T., Burke, J., Villholth, K., Angelica, M., Custodio, E., Daibes, F., et al. (2007). Groundwater: A global assessment of scale and significance. In D. Molden (Ed.), Water for food, water for life: A comprehensive assessment of water management in agriculture (pp. 395–423). London: Earthscan.

    Google Scholar 

  • Shah, T., Bhatt, S., Shah, R., & Talati, J. (2008). Groundwater governance through electricity supply management: assessing an innovative intervention in Gujarat, western India. Agricultural Water Management, 95(11), 1233–1242.

    Article  Google Scholar 

  • Shiva, V. (1991). The green revolution in the Punjab. The Ecologist, 21(2), 57–60.

    Google Scholar 

  • Siebert, S., & Döll, P. (2010). Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology, 384(3), 198–217.

    Article  Google Scholar 

  • Siebert, S., Burke, J., Faures, J.-M., Frenken, K., Hoogeveen, J., Döll, P., et al. (2010). Groundwater use for irrigation–a global inventory. Hydrology and Earth System Sciences, 14, 1863–1880. doi:10.5194/hess-14-1863-2010.

    Article  Google Scholar 

  • Siebert, S., Henrich, V., Frenken, K., & Burke, J. (2013). Update of the digital Global Map of Irrigation Areas (GMIA) to Version 5. Germany: Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn.

    Google Scholar 

  • Singh, D. (2003). Groundwater Markets and Institutional Mechanism in Fragile. Water resources, sustainable livelihoods, and eco-system services, 311.

  • Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y., Velpuri, M., et al. (2009). Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. International Journal of Remote Sensing, 30(14), 3679–3733.

    Article  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, V., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36(18).

  • United Nations, D. o. E. a. S. A., Population Division (2013). World population prospects: The 2012 revision,

  • Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289(5477), 284–288.

    Article  PubMed  Google Scholar 

  • Wada, Y., van Beek, L. P., van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37(20).

  • Wada, Y., Beek, L. P., Sperna Weiland, F. C., Chao, B. F., Wu, Y.-H., & Bierkens, M. F. (2012). Past and future contribution of global groundwater depletion to sea-level rise. Geophysical Research Letters, 39(9).

  • World Bank (2001). India : Power supply to agriculture, volume 1. Summary Report. Washington, DC.

  • World Bank (2010a). Deep wells and prudence : Towards pragmatic action for addressing groundwater overexploitation in India. doi:© World Bank. https://openknowledge.worldbank.org/handle/10986/2835 License: Creative Commons Attribution CC BY 3.0.

  • World Bank (2010b). Managing land and water to feed nine billion people and protect natural systems. In World Development Report 2010 (pp. 133–187).

Download references

Acknowledgments

The data for this paper were compiled from www.indiastat.com, and compilations and calculations are freely available from the authors upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Smilovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smilovic, M., Gleeson, T. & Siebert, S. The limits of increasing food production with irrigation in India. Food Sec. 7, 835–856 (2015). https://doi.org/10.1007/s12571-015-0477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-015-0477-2

Keywords

Navigation