Skip to main content

Resource use and food self-sufficiency at farm scale within two agro-ecological zones of Rwanda

Abstract

Resource use and management are major determinants of the food self-sufficiency of smallholder farmers in sub-Saharan Africa. A study was conducted in Rwanda in two contrasting agro-ecological zones (Central plateau and Buberuka) to characterise farms, quantify their resource flows, and evaluate the effect of resource management on food self-sufficiency. The Simbi and Kageyo sectors were selected as the representatives of agro-ecological zones and two villages were selected within each sector. Wealth ranking, focus group discussions and formal survey techniques were used. Farms were classified into resource groups (RGs) that differed with regards to socio-economic and food self-sufficiency status. Soils were more fertile in Kageyo (Buberuka) than in Simbi (Central plateau). In both sites 67 % or more of the households were classified in the poorest category who cultivated less than 0.2 ha and experienced 4–5 months of food deficit each year. The partial N balance was more negative in Kageyo (−35.87 kg N ha−1 year−1) while the P balance was negative in close fields and outfields but positive in homefields (0.43 kg P ha−1 year−1). Calorie and protein availability were insufficient in RG1 (poor resource group) and RG2 (moderate resource group) farms in Simbi and RG1 (poor resource group) in Kageyo. Boundary line analysis indicated that poor soil C contents led to 0.6–0.8 t ha−1 less yield with respect to the attainable yield in better fields in RG 2. Closing the maize yield gap would result in doubling the energy and protein intake in Simbi. In such complex agricultural systems, there is a need to apply an integrated and multi-dimensional approach to understand differences among farms, identify limitations to food production and explore realistic options to ensure sustainable agricultural production and food self-sufficiency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdulai, A., Barret, C. B., & Hazell, P. (2004). Food aid for market development in sub-saharan Africa. DSGD Discussion paper N o 5. Washington: Development strategy and Governance Division International Food Policy Research Institute (IFPRI).

    Google Scholar 

  2. Ansoms, A. (2008). Striving for growth, bypassing the poor? A critical review of Rwanda’s rural sector policies. Journal of Modern African Studies 46, 1–32

  3. Azam-Ali, S. N., & Squire, G. R. (2002). Principles of tropical agronomy. Wallingford: CAB International.

    Google Scholar 

  4. Browder, J. O., Pedlowski, M. A., & Summers, P. M. (2004). Land use patterns in the Brazilian Amazon: Comparative farm level evidence from Rondonia. Human Ecology, 32, 197–224.

    Article  Google Scholar 

  5. Brunsgaard, G., Kidmose, U., Sørensen, L., Kaack, K. & Eggum, B. O. (1994). The influence of variety and growth conditions on the nutritive value of carrots. Journal of the Science of Food and Agriculture 65, 163–170.

  6. Crowley, E. L., & Carter, S. (2000). Agrarian change and the changing relationships between toil and soil in Maragoli, Western Kenya (1900–1994). Human Ecology, 28, 383–414.

    Article  Google Scholar 

  7. de Graaff, J., Kessler, A., & Nibbering, J. W. (2011). Agriculture and food security in selected countries in sub-saharan Africa: diversity in trends and opportunities. Food Security, 3, 195–213.

    Article  Google Scholar 

  8. De Jager, A. (2005). Participatory technology, policy and institutional development to address soil fertility degradation in Africa. Land Use Policy, 22, 57–66.

    Article  Google Scholar 

  9. den Biggelaar, C. (1994). Farmer experimentation and innovation. A case study of knowledge generation processes in agroforestry systems in Rwanda. Michigan: PhD thesis, Michigan States University.

  10. Djimde, M. (1988). Potentiel agroforestier dans les systèmes d’utilisation des sols des hautes terres d’Afrique de l’Est à régime pluviométrique biomodal. Nairobi: AFRENA/ICRAF.

    Google Scholar 

  11. Drechsel, P., Gyiele, L., Kunze, D., & Cofie, O. (2001). Population density, soil nutrient depletion, and economic growth in sub-saharan Africa. Ecological Economics, 38, 251–258.

    Article  Google Scholar 

  12. Ebanyat, P., de Ridder, N., de Jager, A., Delve, R. J., Bekunda, M. A., & Giller, K. E. (2010). Drivers of change in land use and household determinants of sustainability in smallholder farming systems in eastern Uganda. Population and Environment, 31, 474–506.

    PubMed Central  PubMed  Article  Google Scholar 

  13. Fageria, N. K. (1992). Maximizing crop yields. New York: Marcel Dekker.

    Google Scholar 

  14. Fermont, A. M., van Asten, P. J. A., Tittonell, P., van Wijk, M. T., & Giller, K. E. (2009). Closing the cassava yield gap: an analysis from smallholder farms in East Africa. Field Crops Research, 112, 24–36.

    Article  Google Scholar 

  15. GenStat® Discovery Edition 3. (2009). Lawes agricultural trust. Rothamsted Experimental Station, UK: VSN International Ltd.

  16. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, L., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812–818.

    CAS  PubMed  Article  Google Scholar 

  17. Grote, U., Craswell, E., & Vlek, P. (2005). Nutrient flows in international trade: Ecology and policy issues. Environmental Science and Policy, 8, 439–451.

    Article  Google Scholar 

  18. Jones, P. G., & Thornton, P. K. (2003). The potential impacts of climate change in tropical agriculture: the case of maize and Latin America in 2055. Global Environmental Change, 13, 51–59.

    Article  Google Scholar 

  19. Karanja, D., Endire, S. G., Ruraduma, C., Kimani, P. M., Kweka, S. O., & Butare, L. (2011). Value added bean technologies for enhancing food security, nutrition, income and resilience to cope with climate change and variability challenges in Eastern Africa. Nairobi: International Livestock Research Institute.

    Google Scholar 

  20. Lal, R. (2010). Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security, 2, 169–177.

    Article  Google Scholar 

  21. Mango, N. A. R. (1999). Integrated soil fertility management in Siaya district, Kenya. Managing African Soils 7. London: IED – Drylands Program.

    Google Scholar 

  22. MINAGRI. (2009). Strategic plan for the transformation of agriculture in Rwanda – Phase II (PSTA II). Final report. Kigali: Ministry of Agriculture and Animal Resources.

    Google Scholar 

  23. Ministère du Plan. (1990). Enquête nationale sur le budget et la consommation des ménages. Volume 4. Consommation alimentaire en milieu rural. Kigali: Ministère du Plan.

    Google Scholar 

  24. Mokwunye, A. U., de Jager, A., & Smaling, E. M. A. (1996). Restoring and maintaining the productivity of West African soils: key to sustainable development. Miscellaneous Fertilizer Studies 14. Wageningen: Agricultural Economics Research Institute and Winand Staring Centre for Integrated Land, Soil and Water Research.

    Google Scholar 

  25. Niang, A. I., & Styger, E. (1990). Les systèmes d’utilisation des terres et leur potentiel agroforestier au Rwanda. In: A. I. Niang, A. Gahamanyi, & E. Styger (Eds.), Actes de la première réunion agroforstière (pp. 24–36). Kigali: AFRENA/ICRAF. Publication Number 36.

  26. Ojiem, J. O., de Ridder, N., Vanlauwe, B., & Giller, K. E. (2006). Socio-ecological niche: a conceptual framework for integration of legumes in smallholder farming systems. International Journal of Agricultural Sustainability, 4, 79–93.

    Google Scholar 

  27. Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (2002). Laboratory methods of soil and plant analysis (2nd ed.). Nairobi: TSBF-CIAT and SACRED Africa.

    Google Scholar 

  28. Okigbo, B. N. (1980). Nutritional implications of projects giving high priority to the production of staples of low nutritive quality. In the case for cassava (Manihot esculenta, Crantz) in the humid tropics of West Africa. Food Nutrition Bulletin 2, 1–10.

  29. Palm, C. A., Myers, R. J. K., & Nandwa, S. M. (1997). Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment. In R. J. Buresh, P. A. Sanchez, & F. Calhoun (Eds.), Replenishing soil fertility in Africa (pp. 193–217). Madison: Soil Science Society of America and American Society of Agronomy. Special Publication Number 51.

  30. Pinchón, F. J. (1997). Settler households and land use patterns in the Amazon frontier: farm level evidence from Ecaduor. World Development, 25, 67–91.

    Article  Google Scholar 

  31. Ruben, R., & Pender, J. (2004). Rural diversity and heterogeneity in less-favoured areas: the quest for policy targeting. Food Policy, 29, 303–320.

    Article  Google Scholar 

  32. Sanchez, P. A., Shepherd, K. D., Soule, M. J., Place, F. M., Buresh, R. J., Izac, A. M. N., Mokwunye, A. U., Kwesiga, F. R., Nderitu, C. G., & Woomer, P. L. (1997). Soil fertility replenishment in Africa: An investment in natural resource capital. In R. J. Buresh, P. A. Sanchez, & F. Calhoun (Eds.), Replenishing soil fertility in Africa (pp. 1–46). Madison: Soil Science Society of America and American Society of Agronomy. Special Publication Number 51.

  33. Scoones, I., & Toulmin, C. (1999). Soil nutrient budgets and balances: What use for policy? Managing Africa’s Soils 6. London: IED – Drylands Program.

    Google Scholar 

  34. Shiferaw, B., Prasanna, B. M., Hellin, J., & Banziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3, 307–327.

    Article  Google Scholar 

  35. Smaling, E. M. A., & Braun, A. R. (1996). Soil fertility research in sub-saharan Africa: new dimensions, new challenges. Communications in Soil Science and Plant Analysis, 27, 365–386.

    CAS  Article  Google Scholar 

  36. Smaling, E. M. A., Nandwa, S. M., & Janssen, B. H. (1997). Soil fertility in Africa is at stake. In Buresh, R. J., Sanchez, P. A. and Calhoun, F. (Eds.), Replenishing soil fertility in Africa (pp 47–61). Madison: Soil Science Society of America and American Society of Agronomy. Special Publication Number 51.

  37. Stoorvogel, J. J., & Smaling, E. M. A. (1990). Assessment of soil nutrient depletion in sub-saharan Africa. 1983–2000. Volume III: Literature review and description of land use systems. Report No 8. Wageningen: Winand Staring Centre for Integrated Land, Soil and Water Research.

    Google Scholar 

  38. Thornton, P. K., & Herrero, M. (2001). Integrated crop–livestock simulation models for scenario analysis and impact assessment. Agricultural Systems, 70, 581–602.

    Article  Google Scholar 

  39. Tittonell, P., Vanlauwe, B., Leffelaar, P. A., Rowe, E. C., & Giller, K. E. (2005a). Exploring diversity in soil fertility management of smallholder farms in western Kenya: I. Heterogeneity at region and farm scale. Agriculture, Ecosystems and Environment, 110, 149–165.

    Article  Google Scholar 

  40. Tittonell, P., Vanlauwe, B., Leffelaar, P. A., Shepherd, K. D., & Giller, K. E. (2005b). Exploring diversity in soil fertility management of smallholder farms in western Kenya - II. Within-farm variability in resource allocation, nutrient flows and soil fertility status. Agriculture, Ecosystems and Environment, 110, 166–184.

    Article  Google Scholar 

  41. Trumbho, P., Schlicker, S., Yates, A. A., & Poos, M. (2002). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Journal of the American Dietetic Association, 102, 1621–1630.

    Article  Google Scholar 

  42. United Nations. (2004). World Population to 2300. New York: Department of Economic and Social Affairs/Population Division – United Nations Secretariate.

    Google Scholar 

  43. Van der Zaag, P. (1982). La Fertilité des sols du Rwanda. Bulletin Agricole du Rwanda, 15, 3–24.

    Google Scholar 

  44. Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local relevance – a review. Field Crops Research, 143, 4–17.

    Article  Google Scholar 

  45. Verdoodt, A. (2003). Elaboration and application of an adjusted agricultural land evaluation model for Rwanda, Belgium: PhD thesis, Ghent University.

  46. Von Braun, J. (2007). The World food situation: New driving forces and required actions. Food Policy Report. Washington: International Food Policy Research Institute (IFRI).

    Google Scholar 

  47. Walker, R., Perz, S., Caldas, M., & Silva, L. G. T. (2002). Land use and land cover change in forest frontiers: the role of household life cycle. International Regional Science Review, 25, 169–199.

    Article  Google Scholar 

  48. Yamoah, C. F., Grosz, R., & Nizeyimana, E. (1989). Early growth of alley shrubs in the Highland region of Rwanda. Agroforestry Systems, 9, 171–184.

    Article  Google Scholar 

  49. Zingore, S., Murwira, H. K., Delve, R. J., & Giller, K. E. (2007). Influence of nutrient management strategies on variability of soil fertility, crop yields and nutrient balances on smallholder farms in Zimbabwe. Agriculture, Ecosystems and Environment, 119, 112–126.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the Netherlands organization for cooperation in higher education (NUFFIC) for funding this study through NPT grant (NPT/RWA/061). We are grateful to the field and laboratory technicians for technical assistance and farmers of Simbi and Kageyo for their invaluable collaboration. We also thank two anonymous referees for their detailed and helpful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles Bucagu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bucagu, C., Vanlauwe, B., Van Wijk, M.T. et al. Resource use and food self-sufficiency at farm scale within two agro-ecological zones of Rwanda. Food Sec. 6, 609–628 (2014). https://doi.org/10.1007/s12571-014-0382-0

Download citation

Keywords

  • Agro-ecological zones
  • Farmer resource group
  • Field type
  • Partial nutrient balance
  • Food self-sufficiency