Food Security

, Volume 3, Issue 1, pp 5–17 | Cite as

Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests

  • Glen L. Hartman
  • Ellen D. West
  • Theresa K. Herman
Original Paper

Abstract

The soybean crop is one of the most important crops worldwide. Soybean seeds are important for both protein meal and vegetable oil. The crop is grown on an estimated 6% of the world’s arable land, and since the 1970s, the area in soybean production has the highest percentage increase compared to any other major crop. Recent increases in production coincide with increases in demand for meal and oil. Soybean production was 17 million metric tons (MMT) in 1960 and increased to 230 MMT in 2008. Future soybean production is expected to increase more than other crops, due to expanded production area and higher yields. There are a number of important abiotic and biotic constraints that threaten soybean production by directly reducing seed yields and/or seed quality. Abiotic constraints include extremes in nutrients, temperatures and moisture. These may reduce production directly, but also indirectly through increases in pathogens and pests. Biotic constraints tend to be geographically and environmentally restricted. Some diseases like soybean rust may be explosive by producing copious amounts of air-borne spores. This disease, more so than most, caused great concern when first found invading soybean production areas in Brazil and the United States of America. In contrast, red leaf blotch is a disease restricted to a few countries in Africa, but deserving attention since it has not been intensely studied and adequate management strategies, such as the use of resistant varieties, are not available. Significant losses in soybean yield beyond current levels may have implications for food security because of our dependence on the soybean crop, directly and indirectly for food products. In addition, because the crop is highly nutritious and versatile it offers resources to address world food issues through current and future utilization practices. Future soybean production is expected to increase in proportion to increased demand, and with application of newer genomic technologies, the crop has enormous potential to improve dietary quality for people throughout the world whether consumed as a vegetable crop or processed into various soybean food products.

Keywords

Soybean Soybean production Abiotic and biotic constraints 

References

  1. Ali, N. (2010). Soybean processing and utilization. In G. Singh (Ed.), The soybean (pp. 345–374). CABI.Google Scholar
  2. Azadbakht, L., Shakerhosseini, R., Atabak, S., Jamshidian, M., Mehrabi, Y., & Esmaill-Zadeh, A. (2003). Beneficiary effects of dietary soy protein on lowering plasma levels of lipid and improving kidney function in type II diabetes with nephropathy. European Journal of Clinical Nutrition, 57, 1292–1294.PubMedCrossRefGoogle Scholar
  3. Boerema, G. H., De Gruyter, J., Noordeloos, M. E., & Hamers, M. E. C. (2004). Phoma identification manual: Differentiation of specific and infra-specific taxa in culture. CABI Publishing.Google Scholar
  4. Bonde, M. R., Nester, S. E., Austin, C. N., Stone, C. L., Frederick, R. D., Hartman, G. L., et al. (2006). Evaluation of virulence of Phakopsora pachyrhizi and P. meibomiae isolates. Plant Disease, 90, 708–716.CrossRefGoogle Scholar
  5. Chen, Y., Ho, S. C., Lam, S. S. H., Ho, S. S. S., & Woo, J. L. F. (2003). Soy isoflavones have a favorable effect on bone loss in Chinese postmenopausal women with lower bone mass: a double-blind, randomized, controlled trial. The Journal of Clinical Endocrinology and Metabolism, 88(10), 4740–4747.PubMedCrossRefGoogle Scholar
  6. Chung, G., & Singh, R. (2008). Broadening the genetic base of soybean: a multidisciplinary approach. Critical Reviews in Plant Sciences, 27, 295–341.CrossRefGoogle Scholar
  7. Collinge, D., Lund, O., & Thordal-Christensen, H. (2008). What are the prospects for genetically engineered, disease resistant plants? European Journal of Plant Pathology, 121(3), 217–231.CrossRefGoogle Scholar
  8. Cunha, W. G., Tinoco, M. L. P., Pancoti, H. L., Ribeiro, R. E., & Agagao, F. J. L. (2010). High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathology, 59, 654–660.CrossRefGoogle Scholar
  9. Cure, J. D., & Acock, B. (1986). Crop response to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology, 38, 127–145.CrossRefGoogle Scholar
  10. Dickman, M. (2007). Approaches for improving crop resistance to soilborne fungal diseases through biotechnology using Sclerotinia sclerotiorum as a case study. Australasian Plant Pathology, 36, 116.CrossRefGoogle Scholar
  11. Diers, B., Kopisch-Obuch, F., Hoffman, D., Hartman, G., Pedersen, W., Grau, C., et al. (2006). Registration of AxN-1-55 soybean germplasm with partial resistance to Sclerotinia stem rot. Crop Science, 46, 1403.CrossRefGoogle Scholar
  12. Domier, L. L., Latorre, I. J., Steinlage, T. A., McCoppin, N., & Hartman, G. L. (2003). Variability and transmission of Aphis glycines of North American and Asian soybean mosaic virus isolates. Archives of Virology, 148, 1925–1941.PubMedCrossRefGoogle Scholar
  13. Dong, X., Ji, R., Guo, X., Foster, S., Chen, H., Dong, C., et al. (2008). Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta, 228, 331–340.PubMedCrossRefGoogle Scholar
  14. Eastburn, D., Degennaro, M., DeLucia, E., Dermody, O., & Mcelrone, A. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320–330.CrossRefGoogle Scholar
  15. Faber, M., & Benade, A. J. S. (2003). Integrated home-gardening and community-based growth monitoring activities to alleviate vitamin A deficiency in a rural village in South Africa. Food, Nutrition and Agriculture, 32, 24–30.Google Scholar
  16. FAO. (2010a). Global agriculture toward 2050. Rome: FAO.Google Scholar
  17. FAO. (2010b). The state of food insecurity in the world. Rome: FAO.Google Scholar
  18. Gao, X., Jackson, T. A., Hartman, G. L., & Niblack, T. L. (2006). Interactions between the soybean cyst nematode and Fusarium solani f. sp. glycines based on greenhouse factorial experiments. Phytopathology, 96, 1409–1415.PubMedCrossRefGoogle Scholar
  19. Garcia, A., Calvo, E. S., Kiihl, R. A. D., Harada, A., Hiromoto, D. M., & Vieira, L. G. E. (2008). Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles. Theoretical and Applied Genetics, 117, 545–553.PubMedCrossRefGoogle Scholar
  20. Goldsmith, P. (2008). Economics of soybean production, marketing, and utilization. In L. A. Johnson, P. J. White, & R. Galloway (Eds.), Soybeans: Chemistry, production, processing, and utilization (pp. 117-150). Urbana: AOCS.Google Scholar
  21. Grau, C. R., Dorrance, A. E., Bond, J., & Russin, J. S. (2004). Fungal diseases. In H. R. Boerma & J. E. Specht (Ed.), Soybeans: improvement, prodcution, and uses, 3rd edn. (pp. 679-764). Agronomy Monograph No. 16, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
  22. Guo, J., Li, X., Browning, J. D., Rottingham, G. E., Lubahn, D. B., Constantinou, A., et al. (2004). Dietary soy isoflavones and strone protect ovarioectomized ERaKO and wild-type mice from carcinogen-induced colon cancer. The Journal of Nutrition, 134, 179–182.PubMedGoogle Scholar
  23. Guo, X., Wang, D., Gordon, S., Helliwell, E., Smith, T., Berry, S., et al. (2008). Genetic mapping of QTLs underlying partial resistance to Sclerotinia sclerotiorum in soybean PI 391589A and PI 391589B. Crop Science, 48, 1129.CrossRefGoogle Scholar
  24. Hamilton-Reeves, J. M., Rebello, S. A., Thomas, W., Slaton, J. W., & Kurzer, M. S. (2007). Soy protein isolate increases urinary estrogens and the ratio of 2:16a-Hydroxyestrone in men at high risk off oristate cancer. The Journal of Nutrition, 137, 2258–2263.PubMedGoogle Scholar
  25. Hartman, G. L., & Sinclair, J. B. (1988). Dactuliochaeta, a new genus for the fungus causing red leaf blotch of soybeans. Mycologia, 80, 696–706.CrossRefGoogle Scholar
  26. Hartman, G. L., & Sinclair, J. B. (1992). Cultural studies on Dactuliochaeta glycines, the causal agent of red leaf blotch of soybeans. Plant Disease, 76, 847–852.CrossRefGoogle Scholar
  27. Hartman, G. L., & Sinclair, J. B. (1996). Red leaf blotch (Dactuliochaeta glycines) of soybeans (Glycine max) and its relationship to yield. Plant Pathology, 45, 332–343.CrossRefGoogle Scholar
  28. Hartman, G. L., & Hill, C. B. (2010). Diseases of soybean and their management. In G. Singh (Ed.), The soybean (pp. 276–299). CABI.Google Scholar
  29. Hartman, G. L., Datnoff, L. E., Levy, C., & Sinclair, J. B. (1987). Red leaf blotch of soybeans. Plant Disease, 71, 113–118.CrossRefGoogle Scholar
  30. Hartman, G. L., Wang, T. C., & Tschanz, A. T. (1991). Soybean rust development and the quantitative relationship between rust severity and soybean yield. Plant Disease, 75, 596–600.CrossRefGoogle Scholar
  31. Hartman, G. L., Kull, L., & Huang, Y. H. (1998). Occurrence of Sclerotinia sclerotiorum in soybean fields in East-Central Illinois and enumeration of inocula in soybean seed lots. Plant Disease, 82, 560–564.CrossRefGoogle Scholar
  32. Hartman, G. L., Sinclair, J. B., & Rupe, J. C. (Eds.). (1999). Compendium of soybean diseases (4th ed.). St. Paul: American Phytopathological Society.Google Scholar
  33. Hartman, G. L., Domier, L. L., Wax, L. M., Helm, C. G., Onstad, D. W., Shaw, J. T., et al. (2001). Occurrence and distribution of Aphis glycines on soybeans in Illinois in 2000 and its potential control. Plant Health Progess, (On-line).Google Scholar
  34. Hartman, G. L., Miles, M. R., & Frederick, R. D. (2005). Breeding for resistance to soybean rust. Plant Disease, 89, 664–666.CrossRefGoogle Scholar
  35. Hartman, G. L., Haudenshield, J. S., Smith, K., Tooley, P., Shelton, J., Bullock, R., et al. (2009). Recovery plan for red leaf blotch of soybean caused by Phoma glycinicola.: USDA APHIS. Online at http://www.ars.usda.gov/SP2UserFiles/Place/00000000/opmp/Soybean%20RLB%20FINAL%20July%202009.pdf
  36. Hennings, V. P. (1903). A few new Japanese Uredinaceae. Hedwigia, 42, S107–S108.Google Scholar
  37. Hill, C. B., Li, Y., & Hartman, G. L. (2004a). Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae). Journal of Economic Entomology, 97, 1071–1077.PubMedCrossRefGoogle Scholar
  38. Hill, C. B., Li, Y., & Hartman, G. L. (2004b). Resistance to the soybean aphid in soybean germplasm. Crop Science, 44, 98–106.CrossRefGoogle Scholar
  39. Hill, C. B., Yan, L., & Hartman, G. L. (2006). A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Science, 46, 1601–1605.CrossRefGoogle Scholar
  40. Hill, C. B., Kim, K. S., Crull, L., Diers, B. W., & Hartman, G. L. (2009). Inheritance of resistance to the soybean aphid in soybean PI200538. Crop Science, 49, 1193–1200.CrossRefGoogle Scholar
  41. Hill, C. B., Crull, L., Herman, T., Voegtlin, D. J., & Hartman, G. L. (2010). A new soybean aphid (Hemiptera: Aphididae) biotype identified. Journal of Economic Entomology, 103, 509–515.PubMedCrossRefGoogle Scholar
  42. Hoffman, D. D., Hartman, G. L., Mueller, D. S., Leitz, R. A., Nickell, C. D., & Pedersen, W. L. (1998). Yield and seed quality of soybean cultivars infected with Sclerotinia sclerotiorum. Plant Disease, 82, 826–829.CrossRefGoogle Scholar
  43. Hufstetler, E. V., Boerma, H. R., Carter, T. E., Jr., & Hugh, J. E. (2007). Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Science, 47, 25–35.CrossRefGoogle Scholar
  44. Hymowitz, T. (1970). On the domestication of the soybean. Economic Botany, 24, 408–421.CrossRefGoogle Scholar
  45. Hymowitz, T. (2008). The history of the soybean. In L. Johnson, P. J. White, & R. Galloway (Eds.), Soybeans: chemistry, production, processing, and utilization (pp. 1–32). Urbana, IL: AOCS Press.Google Scholar
  46. Hyten, D. L., Hartman, G. L., Nelson, R. L., Frederick, R. D., Concibido, V. C., & Cregan, P. B. (2007). Map location of the Rpp 1 locus that confers resistance to Phakopsora pachyrhizi (soybean rust) in soybean. Crop Science, 47, 837–838.CrossRefGoogle Scholar
  47. Hyten, D. L., Smith, J., Frederick, R., Tucker, M., Song, Q., & Cregan, P. (2009). Bulked segregant analysis using the GoldenGate Assay to locate the Rpp 3 locus that confers resistance to soybean rust in soybean. Crop Science, 49, 265.CrossRefGoogle Scholar
  48. Johnson, D., & Atallah, Z. (2006). Timing fungicide applications for managing Sclerotinia stem rot of potato. Plant Disease, 90, 755–758.CrossRefGoogle Scholar
  49. Katerji, N., van Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (2003). Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62, 37–66.CrossRefGoogle Scholar
  50. Killgore, E., & Heu, R. (1994). First report of soybean rust in Hawaii. Plant Disease, 78, 1216.CrossRefGoogle Scholar
  51. Kim, K. S., Hill, C. B., Hartman, G. L., Mian, M. A. R., & Diers, B. W. (2008). Discovery of soybean aphid biotypes. Crop Science, 48, 923–928.CrossRefGoogle Scholar
  52. Kumar, V., Rani, A., & Chauhan, G. S. (1996). Nutritional value of soybean. In S. G. (Ed.), The soybean: botany, production, and uses (pp. 375–403). Cambridge, MA: CABI.Google Scholar
  53. Lal, R. (2009). Soil degradation as a reason for inadequate human nutrition. Food Security, 1, 45–57.CrossRefGoogle Scholar
  54. Lennox, C. G. (1942). Edible soybean—a food crop for Hawaii. Hawaiin Planters Record, 46, 139–159.Google Scholar
  55. Levy, C. (2005). Epidemiology and chemical control of soybean rust in southern Africa. Plant Disease, 89, 669–674.CrossRefGoogle Scholar
  56. Li, Y., Hill, C. B., & Hartman, G. L. (2004). Effect of three resistant soybean genotypes on the fecundity, mortality, and maturation of the soybean aphid, Aphis glycines (Homoptera: Aphididae). Journal of Economic Entomology, 97, 1106–1111.PubMedCrossRefGoogle Scholar
  57. Li, Y., Hill, C. B., Carlson, S. R., Diers, B. W., & Hartman, G. L. (2007). Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Molecular Breeding, 19, 25–34.CrossRefGoogle Scholar
  58. Liu, K. (2008). Food use of whole soybeans. In L. Johnson, P. J. White, & R. Galloway (Eds.), Soybeans: chemistry, production, processing, and utilization (pp. 441–482). Urbana, IL: AOCS Press.Google Scholar
  59. Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1).Google Scholar
  60. Lu, G. (2003). Engineering Sclerotinia sclerotiorum resistance in oilseed crops. African Journal of Biotechnology, 2, 509–516.Google Scholar
  61. Maskarinec, G., Aylward, A. G., Erber, E., Takata, Y., & Kolonel, L. N. (2008). Soy intake is related to a lower body mass index in adult women. European Journal of Nutrition, 47, 138–144.PubMedCrossRefGoogle Scholar
  62. Mendelsohn, R., Nordhaus, W. D., & Shaw, D. (1994). The impact of global warming on agriculture: a Ricardian Analysis. The American Economic Review, 84(4), 753–771.Google Scholar
  63. Meyer, D. W., & Badaruddin, M. (2001). Frost tolerance of ten seedling legume species at four growth stages. Crop Science, 41, 1838–1842.CrossRefGoogle Scholar
  64. Miles, M., Hartman, G. L., Levy, C., & Morel, W. (2003). Current status of soybean rust control by fungicides. Pesticide Outlook, 14, 197–200.CrossRefGoogle Scholar
  65. Miles, M., Levy, C., Morel, W., Mueller, T., Steinlage, T., van Rij, N., et al. (2007). International fungicide efficacy trials for the management of soybean rust. Plant Disease, 91, 1450–1458. doi:10.1094/PDIS-91-11-1450.CrossRefGoogle Scholar
  66. Mueller, D., Dorrance, A. E., Derksen, R., Ozkan, E., Grau, C. R., Gaska, J. M., et al. (2002). Efficacy of fungicides on Sclerotinia sclerotiorum and their potential control of Sclertoinia stem rot on soybean. Plant Disease, 86, 26–31.CrossRefGoogle Scholar
  67. Mueller, T. A., Miles, M. R., Morel, W., Marios, J. J., Wright, D. L., Kemerait, R. C., et al. (2009). Effect of fungicide and timing of application on soybean rust severity and yield. Plant Disease, 93, 243–248.CrossRefGoogle Scholar
  68. Murray-Kolb, L. E., Welch, R., Theil, E. C., & Beard, J. L. (2003). Women with low iron stores absorb iron from soybeans. The American Journal of Clinical Nutrition, 77, 180–184.PubMedGoogle Scholar
  69. Nelson, G. (2009). Climate change: impact on agriculture and costs of adaptation. Intl Food Policy Res Inst.Google Scholar
  70. Niblack, T. L., & Chen, S. (2004). Cropping systems. In D. P. Schmitt, J. A. Wrather, & R. D. Riggs (Eds.), Biology and management of the soybean cyst nematode (2nd ed., pp. 181–206). Marceline: Schmitt & Assoc.Google Scholar
  71. Niblack, T. L., & Riggs, R. D. (2004). Variation in virulence phenotypes. In D. P. Schmitt, J. A. Wrather, & R. D. Riggs (Eds.), Biology and management of soybean cyst nematode (2nd ed., pp. 57–72). Marceline: Schmitt & Associates.Google Scholar
  72. Niblack, T. L., Colgrove, A. L., Colgrove, K., & Bond, J. P. (2008). Shift in virulence of soybean cyst nematode is associated with use of resistance from PI 88788. Plant Health Progress. doi:10.1094/PHP-2008-0118-01-RS.
  73. O’Neal, M., & Johnson, K. (2010). Insect pests of soybean and their management. In G. Singh (Ed.), The soybean (pp. 300–325). CABI.Google Scholar
  74. Ono, Y., Buritica, P., & Hennen, J. F. (1992). Delimitation of Phakopsora, Physopella and Cerotelium and their species on Leguminosae. Mycological Research, 96, 825–850.CrossRefGoogle Scholar
  75. Oosterhuis, D. M., Scott, H. D., Hampton, R. E., & Wullschleger, S. D. (1989). Physiological responses of two soybean [glycine max (L.) Merr] cultivars to short term flooding. Environmental and Experimental Botany, 30, 85–92.CrossRefGoogle Scholar
  76. Orf, J. H. (2008). Breeding, genetics, and production of soybean. In L. Johnson, P. J. White, & R. Galloway (Eds.), Soybeans: chemistry, production, processing, and utilization (pp. 33–66). Urbana, IL: AOCS Press.Google Scholar
  77. Panthee, D. (2010). Varietal improvement in soybean. In G. Singh (Ed.), The soybean (pp. 92–112). CABI.Google Scholar
  78. Paul, C., & Hartman, G. L. (2009). Sources of soybean rust resistance challenged with single-spored isolates of Phakopsora pachyrhizi collected from the USA. Crop Science, 49, 1781–1785.CrossRefGoogle Scholar
  79. Peralta, A. L., & Wander, M. M. (2008). Soil organic matter dynamics under soybean exposed to elevated CO2. Plant Soil, 303, 69–81.CrossRefGoogle Scholar
  80. Pham, T. A., Miles, M. R., Frederick, R. D., Hill, C. B., & Hartman, G. L. (2009). Differential responses of resistant soybean genotypes to ten isolates of Phakopsora pachyrhizi. Plant Disease, 93, 224–228.CrossRefGoogle Scholar
  81. Powles, S. (2010). Gene amplification delivers glyphosate-resistant weed evolution. PNAS, 107, 955–956.PubMedCrossRefGoogle Scholar
  82. Qiu, L.-J., & Chang, R.-Z. (2010). The origin and history of soybean. In G. Singh (Ed.), The soybean (pp. 1–23). CABI.Google Scholar
  83. Raghuvansh, R., & Bisht, K. (2010). Uses of soybean: products and preperation. In G. Singh (Ed.), The soybean (pp. 404–426). CABI.Google Scholar
  84. Ragsdale, D. W., Voegtlin, D., & O’Neil, R. (2004). Soybean aphid biology in North America. Annals of the Entomological Society of America, 97, 2-4-208.Google Scholar
  85. Riggs, R. D. (2004). History and distribution. In D. P. Schmitt, J. A. Wrather, & R. D. Riggs (Eds.), Biology and management of soybean cyst nematode (2nd ed., pp. 41–56). Marceline: Schmitt & Associates.Google Scholar
  86. Rosell, M. S., Appleby, P. N., Spencer, E. A., & Key, T. J. (2004). Soy intake and blood cholesterol considerations: a cross-seccional study of 1033 pre- and postmenopausal women in the oxford arm of the European prospective investigation into cancer and nutrition. The American Journal of Clinical Nutrition, 80, 1391–1396.PubMedGoogle Scholar
  87. Schmitt, D. P., Barker, K. R., & Riggs, R. D. (2004). Potential means of management. In D. P. Schmitt, J. A. Wrather, & R. D. Riggs (Eds.), Biology and management of soybean cyst nematode (2nd ed., pp. 57–72). Marceline: Schmitt & Associates.Google Scholar
  88. Schmutz, J., Cannon, S., Schlueter, J., Ma, J., Mitros, T., Nelson, W., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463(7278), 178–183.PubMedCrossRefGoogle Scholar
  89. Schneider, R. W., Hollier, C. A., Whitam, H. K., Palm, M. E., McKemy, J. M., Hernandez, J. R., et al. (2005). First report of soybean rust caused by Phakopsora pachyrhizi in the continental United States. Plant Disease, 89, 774.CrossRefGoogle Scholar
  90. Shanmugasundaram, S., & Yan, M.-R. (2010). Vegetable soybean. In G. Singh (Ed.), The soybean (pp. 427–460). CABI.Google Scholar
  91. Silva, D., Yamanaka, N., Brogin, R., Arias, C., Nepomuceno, A., Di Mauro, A., et al. (2008). Molecular mapping of two loci that confer resistance to Asian rust in soybean. Theoretical and Applied Genetics, 117, 57–63.PubMedCrossRefGoogle Scholar
  92. Sinclair, J. B., & Shurtleff, M. C. (1975). Compendium of soybean diseases. St. Paul: The American Phytopathological Society, Inc.Google Scholar
  93. Slaminko, T. L., Miles, M. R., Frederick, R. D., Bonde, M. R., & Hartman, G. L. (2008). New legume hosts of Phakopsora pachyrhizi based on greenhouse evaluations. Plant Disease, 92, 767–771.CrossRefGoogle Scholar
  94. Slaminko, T. L., Miles, M. R., Marios, J. J., Wright, D. L., & Hartman, G. L. (2008b). Hosts of Phakopsora pachyrhizi identified in field evaluations in Florida. Plant Health Progress, doi:10.1094/PHP-2008-1103-01-RS
  95. Smith, D., Garrison, M., Hollowell, J., Isleib, T., & Shew, B. (2008). Evaluation of application timing and efficacy of the fungicides fluazinam and boscalid for control of Sclerotinia blight of peanut. Crop Protection, 27, 823–833.Google Scholar
  96. Soria-Guerra, R., Rosales-Mendoza, S., Chang, S., Haudenshield, J. S., Padmanaban, A., Rodriguez-Zas, S., et al. (2010). Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theoretical and Applied Genetics, 120, 1315–1333.PubMedCrossRefGoogle Scholar
  97. Strange, R. N., & Scott, P. R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology, 43, 83–116.PubMedCrossRefGoogle Scholar
  98. Venette, R. C., & Ragsdale, D. W. (2004). Assessing the invasion by soybean aphid (Homoptera: Aphididae): where will it end? Annals of the Entomological Society of America, 97, 219–226.CrossRefGoogle Scholar
  99. Villegas, R., Gao, Y., Yang, G., Li, H., Elasy, T. A., Zheng, W., et al. (2008). Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. The American Journal of Clinical Nutrition, 87, 162–167.PubMedGoogle Scholar
  100. Vuong, T., Diers, B. W., & Hartman, G. L. (2008). Identification of QTL for resistance to Slerotinia Stem Rot (Sclerotinia sclerotiorum) in plant introduction 194639. Crop Science, 48, 2209–2214.CrossRefGoogle Scholar
  101. Widholm, J., Finer, J., Vodkin, L., Trick, H., LaFayetter, P., Li, J., et al. (2010). Soybean. In F. Kempken & C. Jung (Eds.), Genetic modification of plants (pp. 473–498). Berlin Heideldberg: Springer-Verlag.CrossRefGoogle Scholar
  102. Yorinori, J. T., Paiva, W. M., Frederick, R. D., Costamilan, L. M., Bertagnolli, P. F., Hartman, G. L., et al. (2005). Epidemics of soybean rust (Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Disease, 89, 675–677.CrossRefGoogle Scholar
  103. Zhang, L., Wang, R., & Hesketh, J. D. (2001). Effects of photoperiod on growth and development of soybean floral bud in different maturity. Agronomy Journal, 93, 944–948.CrossRefGoogle Scholar
  104. Zhao, J., Udall, J., Quijada, P., Grau, C., Meng, J., & Osborn, T. (2006). Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theoretical and Applied Genetics, 112, 509–516.PubMedCrossRefGoogle Scholar
  105. Zheng, H. F., Chen, L. D., & Han, X. Z. (2009). The effects of global warming on soybean yields in a long-term fertilization experiment in Northeast China. Journal of Agricultural Science, 147, 569–580.CrossRefGoogle Scholar

Copyright information

© U.S. Government 2011

Authors and Affiliations

  • Glen L. Hartman
    • 1
    • 2
  • Ellen D. West
    • 2
  • Theresa K. Herman
    • 2
  1. 1.USDA-Agricultural Research ServiceUniversity of IllinoisUrbanaUSA
  2. 2.National Soybean Research Center, Department of Crop SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations