CEAS Space Journal

, Volume 10, Issue 3, pp 343–353 | Cite as

Measurement of fracture toughness of metallic materials produced by additive manufacturing

  • O. Quénard
  • O. Dorival
  • Ph. Guy
  • A. Votié
  • K. Brethome
Original Paper


This study focuses on the microstructure and mechanical properties of metallic materials produced by additive layer manufacturing (ALM), especially the laser beam melting process. The influence of the specimen orientation during the ALM process and that of two post-build thermal treatments were investigated. The identified metal powder is Ti-6Al-4V (titanium base). Metallographic analysis shows their effects on the microstructure of the metals. Mechanical experiments involving tensile tests as well as toughness tests were performed according to ASTM (American Society for Testing and Materials) norms. The results show that the main influence is that of the thermal treatments; however the manufacturing stacking direction may lead to some anisotropy in the mechanical properties.


Additive layer manufacturing Laser beam melting Ti-6Al-4V Fracture toughness Mechanical properties 



Mode I fracture toughness


Young modulus


Yield stress


Ultimate tensile stress


Plastic elongation


Additive layer manufacturing


Additive manufacturing


American Society for Testing and Materials


Electron beam melting


Hot isostatic pressing


Laser beam melting


Scanning electron microscope


Selective laser melting



The authors wish to acknowledge Centre National des Etudes Spatiales (CNES) for support through Grant no. 160025/00 and implication during the recurrent informal meetings. We also thank FusiA company for providing the heat treated manufactured samples, and Thales Alenia Space for the technical discussions. Our acknowledgement also to Exova company for preparing the toughness samples.


  1. 1.
    Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., Kruth, J.-P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58, 3303–3312 (2010)CrossRefGoogle Scholar
  2. 2.
    Facchini, L., Magalini, E., Robotti, P., Molinari, A., Höges, S., Wissenbac, K.: Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J 16(6), 450–459 (2010)CrossRefGoogle Scholar
  3. 3.
    Vrancken, B., Thijs, L., Kruth, J.-P., Van Humbeeck, J.: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J. Alloy. Compd. 541, 177–185 (2012)CrossRefGoogle Scholar
  4. 4.
    Qiu, C., Adkins, N.J.E., Attallah, M.M.: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater. Sci. Eng. A 578, 230–239 (2013)CrossRefGoogle Scholar
  5. 5.
    Simonelli, M., Tse, Y.Y., Tuck, C.: Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V. Mater. Sci. Eng. A 616, 1–11 (2014)CrossRefGoogle Scholar
  6. 6.
    Palanivel, S., Dutt, A.K., Faierson, E.J., Mishra, R.S.: Spatially dependent properties in a laser additive manufactured Ti–6Al–4V component. Mater. Sci. Eng., A 654, 39–52 (2016)CrossRefGoogle Scholar
  7. 7.
    Hrabe, N., Quinn, T.: Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: energy input, orientation, and location. Mater. Sci. Eng. A 573, 271–277 (2013)CrossRefGoogle Scholar
  8. 8.
    Suo, H., Chen, Z., Liu, J., Gong, S., Xiao, J.: “Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing”. Rare Metal Mater Eng 43(4), 780–785 (2014)CrossRefGoogle Scholar
  9. 9.
    Tan, X., Kok, Y., Tan, Y.J., Descoins, M., Mangelinck, D., Tor, S.B., Leong, K.F., Chua, C.K.: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater. 97, 1–16 (2015)CrossRefGoogle Scholar
  10. 10.
    Formanoir, C., Michotte, S., Rigo, O., Germain, L., Godet, S.: Electron beam melted Ti–6Al–4V: microstructure, texture and mechanical behavior of the as-built and heat-treated material. Mater. Sci. Eng., A 652, 105–119 (2016)CrossRefGoogle Scholar
  11. 11.
    Carroll, B.E., Palmer, T.A., Beese, A.M.: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 87, 309–320 (2015)CrossRefGoogle Scholar
  12. 12.
    Van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.-P., Sas, P.: Analysis of fracture toughness and crack propagation of Ti6Al4V produced by selective laser melting. Adv. Eng. Mater. 14(1–2), 92–97 (2013)Google Scholar
  13. 13.
    Rafi, H.K., Starr, T.L., Stucker, B.E.: A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting. Int. J. Adv. Manuf. Technol. 69, 1299–1309 (2013)CrossRefGoogle Scholar
  14. 14.
    Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307 (2013)CrossRefGoogle Scholar
  15. 15.
    Leuders, S., Vollmer, M., Brenne, F., Tröster, T., Niendorf, T.: Fatigue strength prediction for titanium alloy TiAl6V4 manufactured by selective laser melting. Metall Mater Trans A 46(9), 3816–3823 (2015)CrossRefGoogle Scholar
  16. 16.
    Gong, H., Rafi, K., Gu, H., Ram, G.D.J., Starr, T., Stucker, B.: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554 (2015)CrossRefGoogle Scholar
  17. 17.
    Cain, V., Thijs, L., Van Humbeeck, J., Van Hooreweder, B., Knutsen, R.: Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit Manuf 5, 68–76 (2015)CrossRefGoogle Scholar
  18. 18.
    Edwards, P., Ramulu, M.: Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 38(10), 1228–1236 (2015)CrossRefGoogle Scholar
  19. 19.
    Seifi, M., Dahar, M., Aman, R., Harrysson, O., Beuth, J., Lewandowski, J.J.: “Evaluation of orientation dependence of fracture toughness and fatigue crack propagation behavior of as-deposited ARCAM EBM Ti-6Al-4V”. JOM 67(3), 597–607 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhao, X., Li, S., Zhang, M., Liu, Y., Sercombe, T.B., Wang, S., Hao, Y., Yang, R., Murr, L.E.: Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95, 21–31 (2016)CrossRefGoogle Scholar
  21. 21.
    Mower, T.M., Long, M.J.: Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A 651, 198–213 (2016)CrossRefGoogle Scholar
  22. 22.
    Kasperovich, G., Haubrich, J., Gussone, J., Requena, G.: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170 (2016)CrossRefGoogle Scholar
  23. 23.
    Greitemeier, D., Palm, F., Syassen, F., Melz, T.: Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue 94(2), 211–217 (2017)CrossRefGoogle Scholar
  24. 24.
    Li, P., Warner, D.H., Fatemi, A., Phan, N.: Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research. Int. J. Fatigue 85, 130–143 (2016)CrossRefGoogle Scholar
  25. 25.
    Edwards, P., O’Conner, A., Ramulu, M.: Electron beam additive manufacturing of titanium components: properties and performance. J. Manuf. Sci. Eng. 135(6), 061016 (2013)CrossRefGoogle Scholar
  26. 26.
    ASTM E8/E8M-15a: “Standard test methods for tension testing of metallic materials”. ASTM International, West Conshohocken (2015).
  27. 27.
    NF EN 10002-1: “Matériaux métalliques-Essai de traction-Partie 1: méthode d’essai (à la température ambiante)”.
  28. 28.
    ASTM E399-12e3: “Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials”. ASTM International, West Conshohocken (2012).
  29. 29.
    Paradis, G.: “Monographies techniques du DFTN: soudage par laser”; CEA Valduc (2005)Google Scholar
  30. 30.
    Robert, Y.: “Simulation numérique du soudage du TA6V par laser YAG impulsionnel: caractérisation expérimentale et modélisation des aspects thermomécaniques associés à ce procédé”; Sciences de l’ingénieur [physics]; Ecole Nationale Supérieure des Mines de Paris (2007)Google Scholar
  31. 31.
    Kasperovich, G., Hausmann, J.: Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 220, 202–214 (2015)CrossRefGoogle Scholar

Copyright information

© CEAS 2018

Authors and Affiliations

  1. 1.IcamToulouseFrance
  2. 2.Université de Toulouse, Institut Clément Ader, UMR CNRS 5312, INSA/UPS/ISAE/Mines AlbiToulouseFrance
  3. 3.FusiAToulouseFrance
  4. 4.CNESToulouseFrance

Personalised recommendations