Skip to main content

Advertisement

Log in

Measurement of fracture toughness of metallic materials produced by additive manufacturing

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

This study focuses on the microstructure and mechanical properties of metallic materials produced by additive layer manufacturing (ALM), especially the laser beam melting process. The influence of the specimen orientation during the ALM process and that of two post-build thermal treatments were investigated. The identified metal powder is Ti-6Al-4V (titanium base). Metallographic analysis shows their effects on the microstructure of the metals. Mechanical experiments involving tensile tests as well as toughness tests were performed according to ASTM (American Society for Testing and Materials) norms. The results show that the main influence is that of the thermal treatments; however the manufacturing stacking direction may lead to some anisotropy in the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

K IC :

Mode I fracture toughness

E :

Young modulus

YS:

Yield stress

UTS:

Ultimate tensile stress

A :

Plastic elongation

ALM:

Additive layer manufacturing

AM:

Additive manufacturing

ASTM:

American Society for Testing and Materials

EBM:

Electron beam melting

HIP:

Hot isostatic pressing

LBM:

Laser beam melting

SEM:

Scanning electron microscope

SLM:

Selective laser melting

References

  1. Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., Kruth, J.-P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58, 3303–3312 (2010)

    Article  Google Scholar 

  2. Facchini, L., Magalini, E., Robotti, P., Molinari, A., Höges, S., Wissenbac, K.: Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J 16(6), 450–459 (2010)

    Article  Google Scholar 

  3. Vrancken, B., Thijs, L., Kruth, J.-P., Van Humbeeck, J.: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J. Alloy. Compd. 541, 177–185 (2012)

    Article  Google Scholar 

  4. Qiu, C., Adkins, N.J.E., Attallah, M.M.: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater. Sci. Eng. A 578, 230–239 (2013)

    Article  Google Scholar 

  5. Simonelli, M., Tse, Y.Y., Tuck, C.: Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V. Mater. Sci. Eng. A 616, 1–11 (2014)

    Article  Google Scholar 

  6. Palanivel, S., Dutt, A.K., Faierson, E.J., Mishra, R.S.: Spatially dependent properties in a laser additive manufactured Ti–6Al–4V component. Mater. Sci. Eng., A 654, 39–52 (2016)

    Article  Google Scholar 

  7. Hrabe, N., Quinn, T.: Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: energy input, orientation, and location. Mater. Sci. Eng. A 573, 271–277 (2013)

    Article  Google Scholar 

  8. Suo, H., Chen, Z., Liu, J., Gong, S., Xiao, J.: “Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing”. Rare Metal Mater Eng 43(4), 780–785 (2014)

    Article  Google Scholar 

  9. Tan, X., Kok, Y., Tan, Y.J., Descoins, M., Mangelinck, D., Tor, S.B., Leong, K.F., Chua, C.K.: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater. 97, 1–16 (2015)

    Article  Google Scholar 

  10. Formanoir, C., Michotte, S., Rigo, O., Germain, L., Godet, S.: Electron beam melted Ti–6Al–4V: microstructure, texture and mechanical behavior of the as-built and heat-treated material. Mater. Sci. Eng., A 652, 105–119 (2016)

    Article  Google Scholar 

  11. Carroll, B.E., Palmer, T.A., Beese, A.M.: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 87, 309–320 (2015)

    Article  Google Scholar 

  12. Van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.-P., Sas, P.: Analysis of fracture toughness and crack propagation of Ti6Al4V produced by selective laser melting. Adv. Eng. Mater. 14(1–2), 92–97 (2013)

    Google Scholar 

  13. Rafi, H.K., Starr, T.L., Stucker, B.E.: A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting. Int. J. Adv. Manuf. Technol. 69, 1299–1309 (2013)

    Article  Google Scholar 

  14. Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307 (2013)

    Article  Google Scholar 

  15. Leuders, S., Vollmer, M., Brenne, F., Tröster, T., Niendorf, T.: Fatigue strength prediction for titanium alloy TiAl6V4 manufactured by selective laser melting. Metall Mater Trans A 46(9), 3816–3823 (2015)

    Article  Google Scholar 

  16. Gong, H., Rafi, K., Gu, H., Ram, G.D.J., Starr, T., Stucker, B.: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554 (2015)

    Article  Google Scholar 

  17. Cain, V., Thijs, L., Van Humbeeck, J., Van Hooreweder, B., Knutsen, R.: Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit Manuf 5, 68–76 (2015)

    Article  Google Scholar 

  18. Edwards, P., Ramulu, M.: Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 38(10), 1228–1236 (2015)

    Article  Google Scholar 

  19. Seifi, M., Dahar, M., Aman, R., Harrysson, O., Beuth, J., Lewandowski, J.J.: “Evaluation of orientation dependence of fracture toughness and fatigue crack propagation behavior of as-deposited ARCAM EBM Ti-6Al-4V”. JOM 67(3), 597–607 (2015)

    Article  Google Scholar 

  20. Zhao, X., Li, S., Zhang, M., Liu, Y., Sercombe, T.B., Wang, S., Hao, Y., Yang, R., Murr, L.E.: Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95, 21–31 (2016)

    Article  Google Scholar 

  21. Mower, T.M., Long, M.J.: Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A 651, 198–213 (2016)

    Article  Google Scholar 

  22. Kasperovich, G., Haubrich, J., Gussone, J., Requena, G.: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170 (2016)

    Article  Google Scholar 

  23. Greitemeier, D., Palm, F., Syassen, F., Melz, T.: Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue 94(2), 211–217 (2017)

    Article  Google Scholar 

  24. Li, P., Warner, D.H., Fatemi, A., Phan, N.: Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research. Int. J. Fatigue 85, 130–143 (2016)

    Article  Google Scholar 

  25. Edwards, P., O’Conner, A., Ramulu, M.: Electron beam additive manufacturing of titanium components: properties and performance. J. Manuf. Sci. Eng. 135(6), 061016 (2013)

    Article  Google Scholar 

  26. ASTM E8/E8M-15a: “Standard test methods for tension testing of metallic materials”. ASTM International, West Conshohocken (2015). www.astm.org

  27. NF EN 10002-1: “Matériaux métalliques-Essai de traction-Partie 1: méthode d’essai (à la température ambiante)”. www.afnor.org

  28. ASTM E399-12e3: “Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials”. ASTM International, West Conshohocken (2012). www.astm.org

  29. Paradis, G.: “Monographies techniques du DFTN: soudage par laser”; CEA Valduc (2005)

  30. Robert, Y.: “Simulation numérique du soudage du TA6V par laser YAG impulsionnel: caractérisation expérimentale et modélisation des aspects thermomécaniques associés à ce procédé”; Sciences de l’ingénieur [physics]; Ecole Nationale Supérieure des Mines de Paris (2007)

  31. Kasperovich, G., Hausmann, J.: Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 220, 202–214 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Centre National des Etudes Spatiales (CNES) for support through Grant no. 160025/00 and implication during the recurrent informal meetings. We also thank FusiA company for providing the heat treated manufactured samples, and Thales Alenia Space for the technical discussions. Our acknowledgement also to Exova company for preparing the toughness samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Quénard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quénard, O., Dorival, O., Guy, P. et al. Measurement of fracture toughness of metallic materials produced by additive manufacturing. CEAS Space J 10, 343–353 (2018). https://doi.org/10.1007/s12567-018-0202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-018-0202-z

Keywords

Navigation