External factors that regulate movement in the marine rotifer Brachionus plicatilis

Abstract

There are two types of movement pattern in the Brachionidae (rotifers), swimming and attachment, although the factors that induce a shift between them have not been adequately clarified. This study investigated the effects of five external factors—food limitation, temperature, salinity, predator, and un-ionized ammonia—on movement in females of the euryhaline rotifer Brachionus plicatilis sensu stricto. Rotifers under periodic starvation showed increased swimming frequency (percentage of swimming rotifers) to about 50% on feeding compared to controls under continuous feeding (21%). Starved rotifers were further exposed to the following conditions for 2 days: a range of water temperature (15–25 °C), salinity (17–34 practical salinity units), a predator (or other rotifers)-conditioned medium, and un-ionized ammonia (NH3-N; 5–20 mg/l). Neither temperature nor predator conditioning significantly affected rotifer swimming frequency. However, rotifers transferred to a higher salinity or to a rotifer-conditioned medium ceased to exhibit swimming. All the tested ammonia levels caused vigorous swimming of rotifers during the initial experimental period. The results indicate that swimming in female rotifers can be classified as (1) an escape behavior induced by environmental stress, and (2) a response to higher viability under certain favorable environmental conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alver MO, Hagiwara A (2007) An individual-based population model for the prediction of rotifer population dynamics and resting egg production. Hydrobiologia 593:19–26

    Google Scholar 

  2. Araujo A, Hagiwara A (2005) Screening methods for improving rotifer culture quality. Hydrobiologia 546:553–558

    Google Scholar 

  3. Arauzo M (2003) Harmful effects of un-ionized ammonia on the zooplankton community in a deep waste treatment pond. Water Res 37:1048–1054

    CAS  PubMed  Google Scholar 

  4. Batchelder HP, Edwards CA, Powell TM (2002) Individual-based models of copepod populations in coastal upwelling regions: implications of physiologically and environmentally influenced diel vertical migration on demographic success and nearshore retention. Prog Oceanogr 53:307–333

    Google Scholar 

  5. Bower CE, Bidwell JP (1978) Ionization of ammonia in seawater: effects of temperature, pH, salinity. J Fish Res Board Can 35:1012–1016

    CAS  Google Scholar 

  6. Buskey EJ, Coulter C, Strom S (1993) Locomotory patterns of microzooplankton: potential effects on food selectivity of larval fish. Bull Mar Sci 53:29–43

    Google Scholar 

  7. Charoy C, Clément P (1993) Foraging behavior of Brachionus calyciflorus (Pallas): variations in the swimming path according to presence or absence of algal food (Chlorella). Hydrobiologia 255:95–100

    Google Scholar 

  8. Charoy C, Janssen CR (1999) The swimming behavior of Brachionus calyciflorus (rotifer) under toxic stress. Chemosphere 38:3247–3260

    CAS  Google Scholar 

  9. Clément P (1987) Movements in rotifers: correlations of ultrastructure and behavior. In: May L, Wallace R, Herzing A (eds) Rotifer symposium IV. Developments in Hydrobiologia, vol. 42. Springer, Dordrecht, 339−359

  10. Cobcroft JM, Pankhurst PM (2006) Visual field of cultured striped trumpeter Latris lineata (Teleostei) larvae feeding on rotifer prey. Mar Freshwater Behav Physiol 39:193–208

    Google Scholar 

  11. Coughlin DJ (1993) Pre-locating by clownfish (Amphiprion perideraion) larvae feeding on rotifers (Brachionus plicatilis). J Plankton Res 15:117–123

    Google Scholar 

  12. Dahms H-U, Hagiwara A, Lee J-S (2011) Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquat Toxicol 101:1–12

    CAS  PubMed  Google Scholar 

  13. de Araujo AB, Snell TW, Hagiwara A (2000) Effect of unionized ammonia, viscosity and protozoan contamination on the enzyme activity of the rotifer Brachionus plicatilis. Aquac Res 31:359–365

    Google Scholar 

  14. de Araujo AB, Hagiwara A, Snell TW (2001) Effect of unionized ammonia, viscosity and protozoan contamination on reproduction and enzyme activity of the rotifer Brachionus rotundiformis. Hydrobiology 446:363–368

    Google Scholar 

  15. Epp RW, Lewis WM (1984) Cost and speed of locomotion for rotifer. Oecologia 61:289–292

    PubMed  Google Scholar 

  16. Fielder DS, Purser GJ, Battaglene SC (2000) Effect of rapid changes in temperature and salinity on availability of the rotifer Brachionus rotundiformis and Brachionus plicatilis. Aquaculture 189:85–99

    Google Scholar 

  17. Gilbert JJ (2011) Temperature, kairomones and phenotypic plasticity in rotifer Keratella tropica (Apstein, 1907). Hydrobiologia 678:179–190

    Google Scholar 

  18. Gilbert JJ (2014) Morphological and behavioral responses of a rotifer to the predator Asplanchna. J Plankton Res 36:1576–1584

    Google Scholar 

  19. Gilbert JJ, Starkweather PL (1978) Feeding in the rotifer Brachionus calyciflorus. III. Direct observations on the effect of food type, food density, change in food type, and starvation on the incidence of pseudotrochal screening. Int Ver Theor Angew Limnol Verhandl 20:2382–2388

    Google Scholar 

  20. Gómez A, Carmona MJ, Serra M (1997) Ecological factors affecting gene flow in the Brachionus plicatilis complex (Rotifera). Oecologia 111:350–356

    PubMed  Google Scholar 

  21. Grageda AC, Sakakura Y, Minamimoto M, Hagiwara A (2005) Differences in life-history traits in two clonal strains of the self-fertilized fish, Rivulus marmoratus. Environ Biol Fishes 73:427–436

    Google Scholar 

  22. Hagiwara A, Hino A, Hirano R (1988) Effects of temperature and chlorinity on resting egg formation in the rotifer Brachionus plicatilis. Nippon Suisan Gakk 54:569–575

    CAS  Google Scholar 

  23. Hagiwara A, Lee C-S, Miyamoto G, Hino A (1989) Resting egg formation and hatching of the S-type rotifer Brachionus plicatilis at varying salinities. Mar Bio 103:327–332

    Google Scholar 

  24. Hagiwara A, Hamada K, Nishi A, Imaizumi K, Hirayama K (1993) Mass production of rotifer Brachionus plicatilis resting egg in 50 m3 tanks. Nippon Suisan Gakk 59:93–98

    Google Scholar 

  25. Hagiwara A, Hamada K, Hori S, Hirayama K (1994) Increased sexual reproduction in Brachionus plicatilis (Rotifera) with the addition of bacterial and rotifer extracts. J Exp Mar Bio Ecol 181:1–8

    Google Scholar 

  26. Hagiwara A, Yamamiya N, de Araujo AB (1998) Effect of water viscosity on the population growth of the rotifer Brachionus plicatilis Müller. Hydrobiologia 387(388):489–494

    Google Scholar 

  27. Hagiwara A, Gallardo WG, Assavaaree M, Kotani T, de Araujo AB (2001) Live food production in Japan: recent progress and future aspects. Aquaculture 200:111–127

    Google Scholar 

  28. Hagiwara A, Kim H-J, Marcial H (2017) Mass culture and preservation of Brachionus plicatilis sp. Complex. In: Hagiwara A, Yoshinaga T (eds) Rotifers, Fisheries Science Series. Springer Nature, Singapore, pp 35–46

    Google Scholar 

  29. Han C, Kim H-J, Suga K, Li M, Hagiwara A (2018) Comparison of resting egg gene expression with different hatchability related to salinity variation in the marine rotifer Brachionus manjavacas. Fish Sci 84:663–669

    CAS  Google Scholar 

  30. Hirayama K, Kusano T (1972) Fundamental studies on physiology of rotifer for its mass culture. II. Influence of water temperature on population growth of rotifer. Nippon Suisan Gakk 38:1357–1363

    Google Scholar 

  31. Janssen CR, Ferrando MD, Persoone G (1993) Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus. I. Conceptual framework and applications. Hydrobiologia 255(256):21–32

    Google Scholar 

  32. Janssen CR, Ferrando MD, Persoone G (1994) Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus. VI. Rotifer behavior as a sensitive and rapid sublethal test criterion. Ecotoxicol Environ Saf 28:244–255

    CAS  PubMed  Google Scholar 

  33. Kim H-J, Hagiwara A (2011) Effect of salinity during resting egg formation and hatching on descendent reproduction in the rotifer Brachionus rotundiformis Tschugunoff. J Plankton Res 33:1033–1042

    Google Scholar 

  34. Kim H-J, Suga K, Hagiwara A (2013) Effect of light wavelength on the sexual and asexual reproduction of the monogonont rotifer Brachionus manjavacas. Aquacult Sci 61:261–268

    Google Scholar 

  35. Kim H-J, Lee J-S, Hagiwara A (2018) Phototactic behavior of live food rotifer Brachionus plicatilis species complex and its significance in larviculture: a review. Aquaculture 497:253–259

    Google Scholar 

  36. Lass S, Spaak P (2003) Chemically induced anti-predator defenses in plankton: a review. Hydrobiologia 491:221–239

    Google Scholar 

  37. Loose CJ, Dawidowicz P (1994) Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology 75:2255–2263

    Google Scholar 

  38. Lowe CD, Kemp SL, Bates AD, Montagnes DJS (2005) Evidence that the rotifer Brachionus plicatilis is not an osmoconformer. Mar Biol 146:923–929

    Google Scholar 

  39. Luciani A, Chassé JL, Clément P (1983) Aging in Brachionus plicatilis: the evolution of swimming as a function of age at two different calcium concentrations. Hydrobiologia 104:141–146

    Google Scholar 

  40. Mills S, Alcántara-Rodríguez JA, Ciros-Pérez J, Gómez A, Hagiwara A, Galindo KH, Jersabek CD, Malekzadeh-Viayeh R, Leasi F, Lee J-S, Welch DBM, Papakostas S, Riss S, Segers H, Serra M, Shiel R, Smolak R, Snell TW, Stelzer C-P, Tang CQ, Wallace RL, Fontaneto D, Walsh EJ (2017) Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796:39–58

    CAS  Google Scholar 

  41. Preston BL, Cecchine G, Snell TW (1998) Effects of pentachlorophenol on predator avoidance behavior of the rotifer Brachionus calyciflorus. Aquat Toxicol 44:201–212

    Google Scholar 

  42. Preston BL, Snell TW, Dusenbery DB (1999a) The effects of sublethal pentachlorophenol exposure on predation risk in freshwater rotifer species. Aquat Toxicol 47:93–105

    CAS  Google Scholar 

  43. Preston BL, Snell TW, Kneisel R (1999b) UV-B exposure increases acute toxicity of pentachlorophenol and mercury to the rotifer Brachionus calyciflorus. Environ Pollut 106:23–31

    CAS  PubMed  Google Scholar 

  44. Réale D, Clément P, Esparcia-Collado A (1993) Influence of the concentration of oxygen on the swimming path of Brachionus plicatilis (Rotifera). Hydrobiology 255(256):87–93

    Google Scholar 

  45. Rhee J-S, Kim R-O, Choi H-G, Lee J, Lee Y-M, Lee J-S (2011) Molecular and biochemical modulation of heat shock protein 20 (Hsp20) gene by temperature stress and hydrogen peroxide (H2O2) in the monogonont rotifer, Brachionus sp. CBPC 154:19–27

    Google Scholar 

  46. SakakuraY Noakes DLG (2000) Age, growth, and sexual development in the self-fertilizing hermaphroditic fish Rivulus marmoratus. Environ Biol Fishes 59:309–371

    Google Scholar 

  47. Sarma SSS, Resendiz RAL, Nandini S (2011) Morphometric and demographic responses of brachionids prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae). Hydrobiologia 662:179–187

    Google Scholar 

  48. Seuront L, Yamazaki H, Souissi S (2004) Hydrodynamic disturbance and zooplankton swimming behavior. Zool Stud 43:376–387

    Google Scholar 

  49. Sheikh AA, Khursheed I, Ahmad MJ, Ahad I, Tali FA, Nabi SU (2017) Role of infochemicals to enhance the efficacy of biocontrol agents in pest management. Int J Chem Stud 5:655–662

    CAS  Google Scholar 

  50. Snell TW (1998) Chemical ecology of rotifers. Hydrobiologia 387(388):267–276

    Google Scholar 

  51. Snell TW, Childress M (1987) Aging and loss of fertility in male and female Brachionus plicatilis (Rotifera). Int J Invertebr Repr Dev 12:103–110

    Google Scholar 

  52. Snell TW, Hoff FH (1987) Fertilization and male fertility in the rotifer Brachionus plicatilis. Hydrobiologia 147:329–334

    Google Scholar 

  53. Snell TW, Childress MJ, Boyer EM, Hoff FH (1987) Assessing the status of rotifer mass cultures. J World Aquacult Soc 18:270–277

    Google Scholar 

  54. Vadstein O, Olsen LM, Andersen T (2012) Prey-predator dynamics in rotifer: density-dependent consequences of spatial heterogeneity due to surface attachment. Ecology 93:1795–1801

    PubMed  Google Scholar 

  55. Vet L, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Google Scholar 

  56. Wallace RL (1980) Ecology of sessile rotifers. Hydrobiologia 73:181–193

    Google Scholar 

  57. Wallace RL, Smith HA (2013) Rotifera. Wiley, Chichester

  58. Yoshinaga T, Hagiwara A, Tsukamoto K (1999) Effect of conditioned media on the asexual reproduction of the monogonont rotifer Brachionus plicatilis O. F. Müller. Hydrobiologia 412:103–110

    Google Scholar 

  59. Yoshinaga T, Hagiwara A, Tsukamoto K (2003) Life history response and age-specific tolerance to starvation in Brachionus plicatilis O. F. Müller (Rotifera). J Exp Mar Biol Ecol 287:261–271

    Google Scholar 

  60. Yu J-P, Hirayama K (1986) The effect of un-ionized ammonia on the population growth of the rotifer in mass culture. Nippon Suisan Gakk 52:1509–1513

    CAS  Google Scholar 

  61. Yúfera M (2007) Swimming behavior of Brachionus plicatilis in relation to food concentration and feeding rates. Hydrobiologia 593:13–18

    Google Scholar 

  62. Yúfera M, Pascual E, Olivares JM (2005) Factors affecting swimming speed in the rotifer Brachionus plicatilis. Hydrobiologia 546:375–380

    Google Scholar 

  63. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice hall, Englewood Cliffs, pp 563–564

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Scientific Research (B) (2012–2014, no. 24380108; 2017–2019, no. 17H03862) to A. H., and research fellowships for young researchers (2019–2021, no. 19K15897) to H.-J. K. The authors deeply appreciate the valuable comments of Prof. T. W. Snell of the Georgia Institute of Technology and Dr. Robert Nesta Kagali at Nagasaki University, as well as those of the many anonymous contributors to this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hee-Jin Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Ohtani, M., Kakumu, A. et al. External factors that regulate movement in the marine rotifer Brachionus plicatilis. Fish Sci 86, 655–663 (2020). https://doi.org/10.1007/s12562-020-01438-w

Download citation

Keywords

  • Rotifera
  • Brachionus plicatilis sensu stricto
  • Swimming frequency
  • Food limitation
  • External factors