Skip to main content

Advertisement

Log in

Antagonistic activity of marine Streptomyces sp. S073 on pathogenic Vibrio parahaemolyticus

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Marine Streptomyces sp. isolate S073 was shown to have strong antagonistic activity towards the pathogenic Vibrio parahaemolyticus using the agar diffusion method. The antagonistic substance(s) secreted into the supernatant was thermostable and non-proteinaceous in nature. S073 was found to produce carboxylate-type siderophores during most of its life cycle using a chrome azurol S assay. The antagonistic activity of S073 was mostly attributed to its higher ability to compete for iron compared with that of V. parahaemolyticus, as deduced from siderophore quantification. Iron supplementation studies indicated that additional mechanisms besides iron competition were simultaneously involved in governing the observed inhibition. Co-culture analysis indicated that S073, although disadvantaged in growth rate, was still competitive in inhibiting vibrios. The promising potential of S073 development as a biocontrol agent in aquaculture was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al_husnan LA, Alkahtani MDF (2016) Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities. Ann Agric Sci 61:251–255

    Article  Google Scholar 

  • Assefa A, Abunna F (2018) Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet Med Int 2018:5432497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine D, Jacob JC, Philip R (2016) Exclusion of Vibrio spp. by an antagonistic marine actinomycete Streptomyces rubrolavendulae M56. Aquacult Res 47:2951–2960

    Article  CAS  Google Scholar 

  • Baakza A, Vala AK, Dave BP (2004) A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol 311:1–9

    Article  CAS  Google Scholar 

  • Baker-Austin C, Oliver JD, Alam M (2018) Vibrio spp. infections. Nat Rev Disease Primers 4:8

    Article  PubMed  Google Scholar 

  • Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174

    Article  CAS  PubMed  Google Scholar 

  • Bernal MG, Campa-Cordova AI, Saucedo PE (2015) Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Vet World 8:170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondad-Reantaso MG, Subasinghe RP, Arthur JR (2005) Disease and health management in Asian aquaculture. Vet Parasitol 132:249–272

    Article  PubMed  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100(Suppl 2):14555–14561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Ward LR, Burke C (2008) Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol 81:419–429

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258

    Article  PubMed  Google Scholar 

  • Elmahdi S, DaSilva LV, Parveen S (2016) Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food Microbiol 57:128–134

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Garcia Bernal M, Trabal Fernandez N, Saucedo Lastra PE (2017) Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster. J Appl Microbiol 122:601–614

    Article  CAS  PubMed  Google Scholar 

  • Goarant C, Merien F, Berthe F (1999) Arbitrarily primed PCR to type Vibrio spp. pathogenic for shrimp. Appl Environ Microbiol 65:1145–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenlees KJ, Machado J, Bell T (1998) Food borne microbial pathogens of cultured aquatic species. Vet Clin North Am Food Anim Pract 14:101–112

    Article  CAS  PubMed  Google Scholar 

  • Hai NV (2015) The use of probiotics in aquaculture. J Appl Microbiol 119:917–935

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhang L, Tiu L (2015) Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. Front Microbiol 6:914

    PubMed  PubMed Central  Google Scholar 

  • Ina-Salwany MY, Al-Saari N, Mohamad A (2018) Vibriosis in fish: a review on disease development and prevention. J Aquat Anim Health 31:3–22

    Article  PubMed  Google Scholar 

  • Karunasagar I, Pai R, Malathi GR (1994) Mass mortality of Penaeus monodon larvae due to antibiotic resistant Vibrio harveyi infection. Aquaculture 128:203–209

    Article  Google Scholar 

  • Kieser T, Bibb MJ, Chater K (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kishimoto S, Nishimura S, Hattori A (2014) Chlorocatechelins A and B from Streptomyces sp.: new siderophores containing chlorinated catecholate groups and an acylguanidine structure. Org Lett 16:6108–6111

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD, Harvell CD, Conrad JM (2015) Infectious diseases affect marine fisheries and aquaculture economics. Ann Rev Marine Sci 7:471–496

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Latha S, Vinothini G, John Dickson Calvin D (2016) In vitro probiotic profile based selection of indigenous actinobacterial probiont Streptomyces sp. JD9 for enhanced broiler production. J Biosci Bioeng 121:124–131

    Article  CAS  PubMed  Google Scholar 

  • Margalith P, Beretta G (1960) Rifomycin. XI. taxonomic study on Streptomyces mediterranei nov. sp. Mycopathologia et mycologia applicata 13:321–330

    Article  Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCafferty DG, Cudic P, Yu MK (1999) Synergy and duality in peptide antibiotic mechanisms. Curr Opin Chem Biol 3:672–680

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Chakraborty T, Kumar V (2013) Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr (Berl) 97:405–430

    Article  CAS  Google Scholar 

  • Panda SH, Goli JK, Das S (2017) Production, optimization and probiotic characterization of potential lactic acid bacteria producing siderophores. AIMS Microbiol 3:88–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  CAS  PubMed  Google Scholar 

  • Pereira AM, Silva LJ, Meisel LM (2015) Fluoroquinolones and tetracycline antibiotics in a portuguese aquaculture system and aquatic surroundings: occurrence and environmental impact. J Toxicol Environ Health A 78:959–975

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer C, Oliver JD (2003) A comparison of thiosulphate-citrate-bile salts-sucrose (TCBS) agar and thiosulphate–chloride–iodide (TCI) agar for the isolation of Vibrio species from estuarine environments. Lett Appl Microbiol 36:150–151

    Article  CAS  PubMed  Google Scholar 

  • Porse BT, Garrett RA (1999) Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms. J Mol Biol 286:375–387

    Article  CAS  PubMed  Google Scholar 

  • Saha R, Saha N, Donofrio RS (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar D, Arun K, Suguna S (2010) Bioactive potential of Streptomyces against fish and shellfish pathogens. Iran J Microbiol 2:157–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaperumal P, Kamala K, Rajaram R (2015) Bioactive DOPA melanin isolated and characterised from a marine actinobacterium Streptomyces sp. MVCS6 from Versova coast. Nat Prod Res 29:2117–2121

    Article  CAS  PubMed  Google Scholar 

  • Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580

    Article  CAS  PubMed  Google Scholar 

  • Takehana Y, Umekita M, Hatano M (2017) Fradiamine A, a new siderophore from the deep-sea actinomycete Streptomyces fradiae MM456M-mF7. J Antibiot (Tokyo) 70:611–615

    Article  CAS  Google Scholar 

  • Tan LT, Chan KG, Lee LH (2016) Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol 7:79

    PubMed  PubMed Central  Google Scholar 

  • Thirumurugan D, Vijayakumar R (2015) Characterization and structure elucidation of antibacterial compound of Streptomyces sp. ECR77 isolated from east coast of India. Curr Microbiol 70:745–755

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinh NT, Dierckens K, Sorgeloos P (2008) A review of the functionality of probiotics in the larviculture food chain. Mar Biotechnol (NY) 10:1–12

    Article  CAS  Google Scholar 

  • Tomova A, Ivanova L, Buschmann AH (2015) Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environ Microbiol Rep 7:803–809

    Article  CAS  PubMed  Google Scholar 

  • Tuo Y, Yu H, Ai L (2013) Aggregation and adhesion properties of 22 Lactobacillus strains. J Dairy Sci 96:4252–4257

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Sun C (2016) The inhibition and resistance mechanisms of actinonin, isolated from marine Streptomyces sp. NHF165, against Vibrio anguillarum. Front Microbiol 7:1467

    PubMed  PubMed Central  Google Scholar 

  • Yeole RD, Dave BP, Dube HC (2001) Siderophore production by fluorescent pseudomonads colonizing roots of certain crop plants. Indian J Exp Biol 39:464–468

    CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You JL, Cao LX, Liu GF (2005) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21:679–682

    Article  Google Scholar 

  • You J, Xue X, Cao L (2007) Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 76:1137–1144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31300046), the Natural Science Foundation of Guangdong Province (Nos. S2013010013705, 2015A030313319, 2018A030313578), Guangdong Marine and Fishery Bureau Science and Technology Project (No. A201601B05), and the Science and Technology Program of Guangzhou China (No. 201604020029)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Xu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zhang, J., Liang, Q. et al. Antagonistic activity of marine Streptomyces sp. S073 on pathogenic Vibrio parahaemolyticus. Fish Sci 85, 533–543 (2019). https://doi.org/10.1007/s12562-019-01309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-019-01309-z

Keywords

Navigation