The Effectiveness of Activated Sludge Procedure and UV-C254 in Norovirus Inactivation in a Tunisian Industrial Wastewater Treatment Plant

Abstract

The molecular detection of Norovirus GI and Norovirus GII in the Tunisian industrial wastewater treatment plant of Charguia I was conducted to test the effectiveness of secondary biological treatment using the activated sludge procedure and the UV-C254 tertiary treatment radiation using a UV disinfection prototype to upgrade the quality of the purified wastewater. A total of 140 sewage samples were collected from the two lines of sewage treatment procedures. Norovirus GI and Norovirus GII have been found and quantified using Real-Time Reverse Transcription Polymerase Chain Reaction (qRT-PCR) in 66.4 and 86.4% of the collected wastewater samples. The Norovirus GI and GII mean concentration values got in the treated effluents showed a significant decrease of Norovirus viral content rates detected from upstream to downstream of activated sludge procedures and at the output of UV-C254 treatment. These findings characterise and denote for the first time the effectiveness of biological and UV-C254 treatment for Norovirus GI and Norovirus GII removal in Tunis City, northern Tunisia. Also, these data underlined the fact that purified sewage makes up a route of gastroenteritis virus transmission and a cause of viral gastroenteritis associated with water-borne and food-borne outbreaks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. AFNOR (1992). Mise en œuvre des dispositifs d’assainissement autonome. Normalisation française, DTU, France64: 1

  2. Aw, T. G., & Gin, K. Y. (2010). Environmental surveillance and molecular characterisation of human enteric viruses in tropical urban wastewater. Journal of Applied Microbiology,109(2), 716–730. https://doi.org/10.1111/j.1365-2672.2010.04701.x.

    CAS  Article  PubMed  Google Scholar 

  3. Campos, C. J. A., Avant, J., Lowther, J., Till, D., & Lees, D. N. (2016). Human norovirus in untreated sewage and effluents from primary, secondary and tertiary treatment processes. Water Research,103, 224–232. https://doi.org/10.1016/j.watres.2016.07.045.

    CAS  Article  PubMed  Google Scholar 

  4. Da Silva, A. K., Le Saux, J. C., Parnaudeau, S., Pommepuy, M., Elimelech, M., & Le Guyader, F. S. (2007). Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: Different behaviours of genogroups I and II. Applied and Environmental Microbiology,73, 7891–7897. https://doi.org/10.1128/AEM.01428-07.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Dai, H., Chen, W., & Lu, X. (2016). Applying multi-aim optimisation method for the activated sludge process: A review. Water Science Technology,73(2), 223–235. https://doi.org/10.2166/wst.2015.489.

    CAS  Article  PubMed  Google Scholar 

  6. EPA. (1992). Environmental protection agency: Standard for the disposal of sewage sludge. Federal Register: Part,503, 9387–9404.

    Google Scholar 

  7. Fioretti, J. M., Rocha, M. S., Fumian, T. M., Ginuino, A., da Silva, T. P., de Assis, M. R., et al. (2016). The occurrence of human Sapoviruses in wastewater and stool samples in Rio de Janeiro, Brazil. Journal of Applied Microbiology,121(3), 855–862. https://doi.org/10.1111/jam.13205.

    CAS  Article  PubMed  Google Scholar 

  8. Hassen, A., Mahrouk, M., Ouzari, H., Cherif, M., Boudabous, A., & Damelincourt, J. J. (2000). UV disinfection of treated wastewater in a large-scale pilot plant and inactivation of selected bacteria in a laboratory UV device. Bioresource Technology,74(2), 141–150. https://doi.org/10.1016/S0960-8524(99)00179-0.

    CAS  Article  Google Scholar 

  9. Hassine-Zaafrane, M., Kaplon, J., Ben Salem, I., Sdiri-Loulizi, K., Sakly, N., Pothier, P., et al. (2015). Detection and genotyping of group A rotaviruses isolated from sewage samples in Monastir, Tunisia between April 2007 and April 2010. Journal of Applied Microbiology,119(5), 1443–1453. https://doi.org/10.1111/jam.12920.

    CAS  Article  PubMed  Google Scholar 

  10. Hassine-Zaafrane, M., Sdiri-Loulizi, K., Kaplon, J., Ben Salem, I., Pothier, P., Aouni, M., et al. (2014). Molecular detection of human Noroviruses in influent and effluent samples from two biological sewage treatment plants near Monastir, Tunisia. Food Environmental Virology,6, 125–131. https://doi.org/10.1007/s12560-014-9147-3.

    CAS  Article  PubMed  Google Scholar 

  11. Ibrahim, C., Cherif, N., Hammami, S., Pothier, P., & Hassen, A. (2015). Quantification and molecular characterisation of Norovirus after two wastewater treatment procedures. Water Air Soil Pollution,226, 187–193. https://doi.org/10.1007/s11270-015-2402-x.

    CAS  Article  Google Scholar 

  12. Ibrahim, C., Chérif, N., Hammami, S., Pothier, P., & Hassen, A. (2016). Quantification and genotyping of Rotavirus A within two wastewater treatment processes. Clean: Soil, Air, Water,44(4), 393–401. https://doi.org/10.1002/clen.201400588.

    CAS  Article  Google Scholar 

  13. Ibrahim, C., Hammami, S., Mejri, S., Mehri, I., Pothier, P., & Hassen, A. (2017a). Detection of Aichi virus genotype B in two lines of wastewater treatment processes. Microbial Pathogenesis,109, 305–312. https://doi.org/10.1016/j.micpath.2017.06.001.

    CAS  Article  PubMed  Google Scholar 

  14. Ibrahim, C., Mehri, I., Hammami, S., Mejri, S., Hassen, A., & Pierre, P. (2017b). Removal of human astroviruses from hospital wastewater by two biological treatment methods: Natural oxidising lagoons and rotating biodisks. Desalination Water Treatment,89, 287–296. https://doi.org/10.5004/dwt.201.721.356.

    CAS  Article  Google Scholar 

  15. Ibrahim, C., Hassen, A., Pothier, P., Mejri, S., & Hammami, S. (2018). Molecular detection and genotypic characterisation of enteric adenoviruses in hospital wastewater. Environmental Science Pollution Research,25, 1–11. https://doi.org/10.1007/s11356-018-1399-2.

    CAS  Article  Google Scholar 

  16. Ibrahim, C., Hammami, S., Chérif, N., Mejri, S., Pierre, P., & Hassen, A. (2019). Detection of sapoviruses in two biological lines of Tunisian hospital wastewater treatment. International Journal of Environmental Health Research,26, 1–14. https://doi.org/10.1080/09603123.2018.1546835.

    CAS  Article  Google Scholar 

  17. The International Committee on Taxonomy of viruses. (2020). Retrieved July, 2019 from http://www.ictvonline.org/virusTaxonomy.asp.

  18. Jothikumar, N., Lowther, J. A., Henshilwood, K., Lees, D. N., Hill, V. R., & Vinjé, J. (2005). Rapid and sensitive detection of noroviruses by using TaqMan based one-step reverse transcription-PCR assays and application to naturally contaminated shellfish samples. Applied and Environmental Microbiology,71(4), 1870–1875. https://doi.org/10.1128/AEM.71.4.1870-1875.2005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kageyama, T., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., Kojima, S., et al. (2004). Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to norovirus in Japan. Journal of Clinical Microbiology,42, 2988–2995. https://doi.org/10.1128/JCM.42.7.2988-2995.2004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Kazama, S., Miura, T., Masago, Y., Konta, Y., Tohma, K., Manaka, T., et al. (2017). Environmental surveillance of norovirus genogroups I and II for sensitive detection of epidemic variants. Applied and Environmental Microbiology,83(9), e03406–e3416. https://doi.org/10.1128/AEM.03406-16.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Kitajima, M., Iker, B. C., Pepper, I. L., & Gerba, C. P. (2014). Relative abundance and treatment reduction of viruses during wastewater treatment process identification of potential viral indicators. Science Total Environment,488–489, 290–296. https://doi.org/10.1016/j.scitotenv.2014.04.087.

    CAS  Article  Google Scholar 

  22. Kitajima, M., Rachmadi, A. T., Iker, B. C., Haramoto, E., & Gerba, C. P. (2018). Temporal variations in genotype distribution of human sapoviruses and aichi virus 1 in wastewater in Southern Arizona, United States. Journal of Applied Microbiology,124(5), 1324–1332. https://doi.org/10.1111/jam.13712.

    CAS  Article  PubMed  Google Scholar 

  23. Kokkinos, P., Ziros, P., Meri, D., Filippidou, S., Kolla, S., Galanis, A., et al. (2011). An additional/alternative approach for virological surveillance in Greece? International Journal of Environmental Research and Public Health,8(6), 1914–1922. https://doi.org/10.3390/ijerph8061914.

    Article  PubMed  PubMed Central  Google Scholar 

  24. La Rosa, G., Pourshaban, M., Iaconelli, M., & Muscillo, M. (2010). Quantitative real-time of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Annali dell' Istituto Superiore di Sanita,46(3), 266–273. https://doi.org/10.4415/ANN_10_03_07.

    CAS  Article  Google Scholar 

  25. Layman, W. H., Walsh, J. F., Kotch, J. B., Weber, D. J., Gunn, E., & Vinjé, J. (2009). A prospective study of etiologic agents of acute gastroenteritis outbreaks in child-care centres. Journal de Pediatria,154(2), 253–257. https://doi.org/10.1016/j.jpeds.2008.07.057.

    Article  Google Scholar 

  26. Lizasoain, A., Tort, L. F. L., García, M., Gillman, L., Alberti, A., Leite, J. P. G., et al. (2018). Human enteric viruses in a wastewater treatment plant: evaluation of activated sludge combined with UV disinfection process reveals different removal performances for viruses with different features. Letters in Applied Microbiology,66(3), 215–221. https://doi.org/10.1111/lam.12839.

    CAS  Article  PubMed  Google Scholar 

  27. Mabasa, V. V., Meno, K. D., Taylor, M. B., & Mans, J. (2018). Environmental surveillance for noroviruses in selected South African wastewaters 2015–2016: Emergence of the novel GII.17. Food and Environmental Virology,10(1), 16–28. https://doi.org/10.1007/s12560-017-9316-2.

    CAS  Article  PubMed  Google Scholar 

  28. Matthews, J. E., Dickey, B. W., Miller, R. D., Felzer, J. R., Dawson, B. P., Lee, A. S., et al. (2012). Epidemiology of published norovirus outbreaks: A review of risk factors associated with attack rates and genogroup. Epidemiology and Infection,140, 1161–1172. https://doi.org/10.1017/S0950268812000234.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Mir-Tutusaus, J. A., Baccar, R., Caminal, G., & Sarrà, M. (2018). Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Research,138, 137–151. https://doi.org/10.1016/j.watres.2018.02.056.

    CAS  Article  PubMed  Google Scholar 

  30. Myrmel, M., Lange, H., & Rimstad, E. (2015). A 1-year quantitative survey of noro-, adeno-, human boca—, and hepatitis E viruses in raw and secondarily treated sewage from two plants in Norway. Food and Environmental Virology,7(3), 213–223. https://doi.org/10.1007/s12560-015-9200-x.

    CAS  Article  PubMed  Google Scholar 

  31. Prévost, B., Lucas, F. S., Goncalves, A., Richard, F., Moulin, L., & Wurtzer, S. (2015). A large-scale survey of enteric viruses in the river and wastewater underlines the health status of the local population. Environment International,79, 42–50. https://doi.org/10.1016/j.envint.2015.03.004.

    Article  PubMed  Google Scholar 

  32. Qiu, Y., Lee, B. E., Neumann, N., Ashbolt, N., Craik, S., Maal-Bared, R., et al. (2015). Assessment of human virus removal during municipal wastewater treatment in Edmonton, Canada. Journal of Applied Microbiology,119(6), 1729–1739. https://doi.org/10.1111/jam.12971.

    CAS  Article  PubMed  Google Scholar 

  33. Rodier, J. (1978). L’analyse de l’eau: Eaux Naturelles, Eaux résiduaires, Eaux de Mer (6th ed.). Paris: Dunod.

    Google Scholar 

  34. Sima, L. C., Schaefffer, J., Le Saux, J. C., Parnaudeau, S., Elimelech, M., & Le Guyader, F. S. (2011). Calicivirus removal in a membrane bioreactor wastewater treatment plant. Applied and Environmental Microbiology,77(15), 5170–5177. https://doi.org/10.1128/AEM.00583-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Sano, D., Amarasiri, M., Hata, A., Watanabe, T., & Katayama, H. (2016). Risk management of infectious viral diseases in wastewater reclamation and reuse: Review. Environment International,91, 220–229. https://doi.org/10.1016/j.envint.2016.03.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Schmitz, B. W., Kitajima, M., Campillo, M. E., Gerba, C. P., & Pepper, I. L. (2016). Virus reduction during advanced bardenpho and conventional wastewater treatment processes. Environmental Science Technology,50(17), 9524–9532. https://doi.org/10.1021/acs.est.6b01384.

    CAS  Article  PubMed  Google Scholar 

  37. Sdiri-Loulizi, K., Gharbi-Khélifi, H., de Rougemont, A., Chouchane, S., Sakly, N., Ambert-Balay, K., et al. (2008). Acute infantile gastroenteritis associated with human enteric viruses in Tunisia. Journal of Clinical Microbiology,46(4), 1349–1355. https://doi.org/10.1128/JCM.02438-07.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sdiri-Loulizi, K., Hassine, M., Aouni, Z., Gharbi-Khelifi, H., Chouchane, S., Sakly, N., et al. (2010). Detection and molecular characterisation of enteric viruses in environmental samples in Monastir, Tunisia, between January 2003 and April 2007. Journal of Applied Microbiology,109, 1093–1104. https://doi.org/10.1111/j.1365-2672.2010.04772.x.

    CAS  Article  PubMed  Google Scholar 

  39. Suffredini, E., Iaconelli, M., Equestre, M., Valdazo-González, B., Ciccaglione, A. R., Marcantonio, C., et al. (2018). Correction to: Genetic diversity among genogroup II noroviruses and Progressive emergence of GII.17 in wastewaters in Italy (2011–2016) revealed by next-Generation and Sanger sequencing. Food and Environmental Virology,10(2), 222–223. https://doi.org/10.1007/s12560-017-9328-y.

    CAS  Article  PubMed  Google Scholar 

  40. Teixeira, D. M., Spada, P. K., Morais, L. L., Fumian, T. M., Lima, I. C., Oliveira, D. S., et al. (2017). Norovirus genogroups I and II in environmental water samples from Belém City, Northern Brazil. Journal of Water and Health,15(1), 163–174. https://doi.org/10.2166/wh.2016.275.

    Article  PubMed  Google Scholar 

  41. Turki, Y., Mehri, I., Lajnef, R., Rejab, A. B., Khessairi, A., Cherif, H., et al. (2017). Biofilms in bioremediation and wastewater treatment: Characterisation of bacterial community structure and diversity during seasons in municipal wastewater treatment process. Environmental Science and Pollution Research,24(4), 3519–3530. https://doi.org/10.1007/s11356-016-8090-2.

    CAS  Article  Google Scholar 

  42. Victoria, M., Tort, L. F., Lizasoain, A., García, M., Castells, M., Berois, M., et al. (2016). Norovirus molecular detection in Uruguayan sewage samples reveals high genetic diversity and GII.4 variant replacements a long time. Journal of Applied Microbiology,120(5), 1427–1435. https://doi.org/10.1111/jam.13058.

    CAS  Article  PubMed  Google Scholar 

  43. Zhou, N., Lin, X., Wang, S., Tao, Z., Xiong, P., Wang, H., et al. (2016). Molecular epidemiology of GI and GII noroviruses in sewage: 1-year surveillance in eastern China. Journal of Applied Microbiology,121(4), 1172–1179. https://doi.org/10.1111/jam.13218.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study received the support of the CERTE (Techno Park of Borj-Cédria, Tunisia) and the National Reference Centre of Enteric Viruses (Dijon, France).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chourouk Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, C., Hammami, S., Khelifi, N. et al. The Effectiveness of Activated Sludge Procedure and UV-C254 in Norovirus Inactivation in a Tunisian Industrial Wastewater Treatment Plant. Food Environ Virol (2020). https://doi.org/10.1007/s12560-020-09434-0

Download citation

Keywords

  • Norovirus
  • Industrial activated sludge procedures
  • UV-C254 disinfection
  • Real-time RT-PCR
  • Wastewater quality