Analyzing Social Robotics Research with Natural Language Processing Techniques

Abstract

The fast growth of social robotics (SR) has not been unidirectional, but rather towards a multidisciplinary scenario, creating a need for collaboration between different fields. This divergent expansion calls for a clear analysis of the field aimed at better orienting the research, thus paving the future of social robotics. This paper aims at understanding how the SR research field evolved in the last two decades by analyzing academic publications in SR and human–robot interaction using natural language processing (NLP) techniques. The analysis spotted an overlap between SR and human–robot interaction research fields that have been disambiguated using a data-driven approach that leads to the identification of a new group of papers we clustered under the concept of “soft HRI.” This research topic has been analyzed by extracting trends and insights. Finally, another topic modelling step has been applied to identify seven sub-topics that have been discussed and analyzed picturing the current state of the art of SR. The paper reports a complete overview of the SR research field identifying various topics and sub-topics helping researchers in understanding the evolution of this field, thus supporting the strategic placing and evolution of their research activities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    1536 citations on Scopus and 2741 on Google Scholar by February 14, 2020

  2. 2.

    https://www.hansonrobotics.com/zeno/

  3. 3.

    https://www.jibo.com/

  4. 4.

    http://consequentialrobotics.com/miro-beta

  5. 5.

    https://us.aibo.com/

  6. 6.

    https://www.hansonrobotics.com/professor-einstein/

  7. 7.

    http://www.parorobots.com/

  8. 8.

    https://www.softbankrobotics.com/

  9. 9.

    https://bl.ocks.org/FilippoChiarello/raw/7b6991b424c3444b32b4d3e95d65a634

  10. 10.

    https://bl.ocks.org/FilippoChiarello/raw/bcdd2951694eda35bfa86da7825f75ef

References

  1. 1.

    Breazeal CL. Designing sociable robots. Cambridge: MIT Press; 2004.

    Google Scholar 

  2. 2.

    Breazeal C, Dautenhahn K, Kanda T. Social robotics. Springer handbook of robotics. Springer; 2016. p. 1935–1972.

  3. 3.

    Belpaeme T, Kennedy J, Ramachandran A, Scassellati B, Tanaka F. Social robots for education: A review. Science robotics 2018;3(21):1–9.

    Article  Google Scholar 

  4. 4.

    Sheridan TB. 2020. Current opinion in psychology.

  5. 5.

    Johal W. 2020. Current robotics reports, pp 1–9.

  6. 6.

    Fong T, Nourbakhsh I, Dautenhahn K. A survey of socially interactive robots. Robot Auton Sys 2003;42(3–4):143.

    Article  Google Scholar 

  7. 7.

    Goodrich MA, Schultz AC. HumanRobot Interaction: A Survey. Foundations and Trends® in Human-Computer Interaction 2007;1(3):203. https://doi.org/10.1561/1100000005.

    Article  Google Scholar 

  8. 8.

    Persson P, Laaksolahti J, Lonnqvist P. Understanding socially intelligent agents-a multilayered phenomenon. IEEE Trans Sys Man Cybern Sys Hum 2001;31(5):349–360.

    Article  Google Scholar 

  9. 9.

    Leite I, Martinho C, Paiva A. Social robots for long-term interaction: a survey. Int J Soc Robot 2013;5(2):291–308.

    Article  Google Scholar 

  10. 10.

    Paiva A, Leite I, Boukricha H, Wachsmuth I. Empathy in Virtual Agents and Robots. ACM Trans Inter Intell Sys 2017;7(3):1–40. https://doi.org/10.1145/2912150.

    Article  Google Scholar 

  11. 11.

    Breazeal C. Toward sociable robots. Robot Auton Sys 2003;42(3–4):167–175.

    Article  Google Scholar 

  12. 12.

    Mejia C, Kajikawa Y. Bibliometric Analysis of Social Robotics Research: Identifying Research Trends and Knowledgebase. Appl Sci 2017;7(12):1316. https://doi.org/10.3390/app712131.

    Article  Google Scholar 

  13. 13.

    Fischer K, Niebuhr O. Studying Language Attitudes Using Robots. Companion of the 2020 ACM/IEEE international conference on human-robot interaction; 2020. p. 195–196.

  14. 14.

    Kozima H, Michalowski MP, Nakagawa C. Keepon. Int J Soc Robot 2009;1(1):3–18. https://doi.org/10.1007/s12369-008-0009-8.

    Article  Google Scholar 

  15. 15.

    Salvador MJ, Silver S, Mahoor MH. An emotion recognition comparative study of autistic and typically-developing children using the zeno robot. 2015 IEEE international conference on robotics and automation (ICRA). IEEE; 2015. p. 6128–6133. https://doi.org/10.1109/ICRA.2015.7140059.

  16. 16.

    Hodson H. 2014. The first family robot.

  17. 17.

    Mitchinson B, Prescott TJ. MIRO: a robot “Mammal” with a biomimetic brain-based control system. Conference on biomimetic and biohybrid systems. Berlin: Springer; 2016. p. 179–191.

  18. 18.

    Breazeal C, Scassellati B. A Context-Dependent Attention System for a Social Robot. Proceedings of the Sixteenth international joint conference on artificial intelligence. San Francisco: Morgan Kaufmann Publishers; 1999. p. 1146–1153.

  19. 19.

    Metta G, Sandini G, Vernon D, Natale L, Nori F. The iCub humanoid robot: an open platform for research in embodied cognition. Proceedings of the 8th workshop on performance metrics for intelligent systems; 2008. p. 50–56.

  20. 20.

    Wainer J, Robins B, Amirabdollahian F, Dautenhahn K. Using the Humanoid Robot KASPAR to Autonomously Play Triadic Games and Facilitate Collaborative Play Among Children With Autism. IEEE Trans Auton Ment Dev 2014;6(3):183–199. https://doi.org/10.1109/TAMD.2014.2303116.

    Article  Google Scholar 

  21. 21.

    Dautenhahn K, Nehaniv CL, Walters ML, Robins B, Kose-Bagci H, Mirza NA, Blow M. KASPAR–a minimally expressive humanoid robot for human–robot interaction research. Appl Bionics Biomech 2009;6(3–4):369–397.

    Article  Google Scholar 

  22. 22.

    Mazzei D, Billeci L, Armato A, Lazzeri N, Cisternino A, Pioggia G, Igliozzi R, Muratori F, Ahluwalia A, De Rossi D. The FACE of autism. 19th international symposium in robot and human interactive communication. IEEE; 2010. p. 791–796. https://doi.org/10.1109/ROMAN.2010.5598683.

  23. 23.

    Lazzeri N, Mazzei D, Greco A, Rotesi A, Lanatà A, De Rossi DE. Can a humanoid face be expressive? A psychophysiological investigation. Front Bioeng Biotechnol 2015;3:64.

    Article  Google Scholar 

  24. 24.

    Mazzei D, Lazzeri N, Hanson D, De Rossi D. Hefes: An hybrid engine for facial expressions synthesis to control human-like androids and avatars. 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE; 2012. p. 195–200.

  25. 25.

    Nishio S, Ishiguro H, Hagita N. Geminoid: Teleoperated android of an existing person. Human Robot New Dev 2007 ;14:343–352.

    Google Scholar 

  26. 26.

    Gácsi M, Kis A, Faragò T, Janiak M, Muszyński R, Miklósi A. Humans attribute emotions to a robot that shows simple behavioural patterns borrowed from dog behaviour. Comput Hum Behav 2016;59:411–419. https://doi.org/10.1016/j.chb.2016.02.043. Cited By 10.

    Article  Google Scholar 

  27. 27.

    Kumari R, Jeong JY, Lee BH, Choi KN, Choi K. 2019. J Inf Sci: 0165551519887878. 1.

  28. 28.

    Nocentini O, Fiorini L, Acerbi G, Sorrentino A, Mancioppi G, Cavallo F. A Survey of Behavioral Models for Social Robots. Robotics 2019;8(3):54.

    Article  Google Scholar 

  29. 29.

    Robinson NL, Cottier TV, Kavanagh DJ. Psychosocial health interventions by social robots: systematic review of randomized controlled trials. J Med Internet Res 2019;21(5):e13203.

    Article  Google Scholar 

  30. 30.

    Dawe J, Sutherland C, Barco A, Broadbent E. 2019. BMJ Paediat Open 3(1) 1–16.

  31. 31.

    Siddiqi S, Sharan A. 2015. Int J Comput Appl 109(2) 18-23.

  32. 32.

    Liu R, Wang YK. 2011. J Taiyuan Univ Technol: 2.

  33. 33.

    Newman D, Koilada N, Lau JH, Baldwin T. Bayesian text segmentation for index term identification and keyphrase extraction. Proceedings of COLING 2012; 2012. p. 2077–2092.

  34. 34.

    Lu Y, Li R, Wen K, Lu Z. Automatic keyword extraction for scientific literatures using references. Proceedings of the 2014 international conference on innovative design and manufacturing (ICIDM). IEEE; 2014. p. 78–81.

  35. 35.

    Yujian L, Bo L. A normalized Levenshtein distance metric. IEEE Trans Patt Anal Mach Intell 2007;29(6):1091–1095.

    Article  Google Scholar 

  36. 36.

    Straka M, Straková J. Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe. Proceedings of the CoNLL 2017 shared task: multilingual parsing from raw text to universal dependencies; 2017. p. 88–99.

  37. 37.

    Chiarello F, Melluso N, Bonaccorsi A, Fantoni G. A Text Mining Based Map of Engineering Design: Topics and their Trajectories Over Time. Proceedings of the design society: international conference on engineering design. Cambridge University Press; 2019. p. 2765–2774.

  38. 38.

    Trivelli L, Apicella A, Chiarello F, Rana R, Fantoni G, Tarabella A. 2019. British Food J.

  39. 39.

    Cascini G, Fantoni G, Montagna F. . Des Stud 2013;34(5):636.

    Article  Google Scholar 

  40. 40.

    Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. J Mach Learn Res 2003;3: 993–1022. https://doi.org/10.1162/jmlr.2003.3.4-5.993.

    MATH  Google Scholar 

  41. 41.

    Ng KW, Tian GL, Tang ML, Vol. 888. Dirichlet and related distributions: theory, methods and applications. New York: Wiley; 2011.

    Google Scholar 

  42. 42.

    Amami M, Pasi G, Stella F, Faiz R. An lda-based approach to scientific paper recommendation. International conference on applications of natural language to information systems. Springer; 2016. p. 200–210.

  43. 43.

    Wang C, Blei DM. Collaborative topic modeling for recommending scientific articles. Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining; 2011. p. 448–456.

  44. 44.

    Arun R, Suresh V, Veni Madhavan CE, Narasimha Murthy MN. Lecture notes in computer science. Berlin: Springer; 2010 . p. 391–402. https://doi.org/10.1007/978-3-642-13657-3_43.

  45. 45.

    Cao J, Xia T, Li J, Zhang Y, Tang S. A density-based method for adaptive LDA model selection. Neurocomputing 2009;72(7–9):1775–1781. https://doi.org/10.1016/J.NEUCOM.2008.06.011.

    Article  Google Scholar 

  46. 46.

    Deveaud R, SanJuan E, Bellot P. Accurate and effective latent concept modeling for ad hoc information retrieval. Doc Num 2014;17(1):61–84. https://doi.org/10.3166/dn.17.1.61-84.

    Article  Google Scholar 

  47. 47.

    Griffiths TL, Steyvers M. Finding Scientific Topics. Proc Natl Acad Sci U S A 2004;101(suppl 1):5228–5235. https://doi.org/10.1073/pnas.0307752101.

    Article  Google Scholar 

  48. 48.

    Dagan I, Lee L, Pereira F. 1997. Similarity-based methods for word sense disambiguation arXiv:cmp-lg/9708010.

  49. 49.

    Breazeal C. Emotion and sociable humanoid robots. Int J Hum Comput Stud 2003;59(1–2):119–155.

    Article  Google Scholar 

  50. 50.

    Bartneck C, Kulić D, Croft E, Zoghbi S. Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 2009;1(1):71.

    Article  Google Scholar 

  51. 51.

    Calinon S, Guenter F, Billard A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans Sys Man Cybern Part B (Cybernetics) 2007;37(2):286–298.

    Article  Google Scholar 

  52. 52.

    Dautenhahn K. Socially intelligent robots: dimensions of human–robot interaction. Phil Trans Royal Soc B: Biol Sci 2007;362(1480):679–704.

    Article  Google Scholar 

  53. 53.

    Duffy BR. Anthropomorphism and the social robot. Robot Auton Sys 2003;42(3–4):177.

    Article  Google Scholar 

  54. 54.

    Hancock PA, Billings DR, Schaefer KE, Chen JY, De Visser EJ, Parasuraman R. A meta-analysis of factors affecting trust in human-robot interaction. Hum Fact 2011;53(5):517–527.

    Article  Google Scholar 

  55. 55.

    Pineau J, Montemerlo M, Pollack M, Roy N, Thrun S. Towards robotic assistants in nursing homes: Challenges and results. Robot Auton Sys 2003;42(3–4):271–281.

    Article  Google Scholar 

  56. 56.

    Laker DR, Powell JL. The differences between hard and soft skills and their relative impact on training transfer. Hum Res Dev Quart 2011;22(1):111–122.

    Article  Google Scholar 

  57. 57.

    Schulz B. The importance of soft skills: Education beyond academic knowledge. Nawa J Commun 2008;2(1):146–154.

    Google Scholar 

  58. 58.

    Taylor E. Investigating the perception of stakeholders on soft skills development of students: Evidence from South Africa. Inter J E-Skills Lifelong Learn 2016;12(1):1–18.

    Google Scholar 

  59. 59.

    Cimatti B. Definition, development, assessment of soft skills and their role for the quality of organizations and enterprises. International Journal for quality research 2016;10(1):97–130.

    Google Scholar 

  60. 60.

    Dashtipour K, Gogate M, Li J, Jiang F, Kong B, Hussain A. A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks. Neurocomputing 2020;380:1.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniele Mazzei.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mazzei, D., Chiarello, F. & Fantoni, G. Analyzing Social Robotics Research with Natural Language Processing Techniques. Cogn Comput 13, 308–321 (2021). https://doi.org/10.1007/s12559-020-09799-1

Download citation

Keywords

  • Social robotics
  • Human–robot interaction
  • Bibliometric analysis
  • Topic modelling
  • Natural language processing