An Effective Semi-fragile Watermarking Method for Image Authentication Based on Lifting Wavelet Transform and Feed-Forward Neural Network

Abstract

Digital watermarking is a significant issue in the field of information security and avoiding the misuse of images in the world of Internet and communication. This paper proposes a novel watermarking method for tamper detection and recovery using semi-fragile data hiding, based on lifting wavelet transform (LWT) and feed-forward neural network (FNN). In this work, first, the host image is decomposed up to one level using LWT, and the discrete cosine transform (DCT) is applied to each 2×2 blocks of diagonal details. Next, a random binary sequence is embedded in each block as the watermark by correlating DC coefficients. In the authentication stage, first, the geometry is analyzed by using speeded up robust features (SURF) algorithm and extract watermark bits by using FNN. Afterward, logical exclusive or operation between original and extracted watermark is applied to detect tampered region. Eventually, in the recovery stage, tampered regions are recovered using the inverse halftoning technique. The performance and efficiency of the method and its robustness against various geometric, non-geometric, and hybrid attacks are reported. From the experimental results, it can be seen that the proposed method is superior in terms of robustness and quality of the watermarked and recovered images, respectively, compared to the state-of-the-art methods. Besides, imperceptibility has been improved by using different correlation steps as the gain factor for flat (smooth) and texture (rough) blocks. Based on the advantages exhibited, the proposed method outperforms the related works, in terms of superiority, efficiency, and effectiveness for tamper detection and recovery-based applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. 1.

    Shih FY. Digital watermarking and steganography fundamentals and techniques, 2nd ed. Boca Raton: CRC Press; 2017.

    Google Scholar 

  2. 2.

    Zhao H, Ren J. Cognitive computation of compressed sensing for watermark signal measurement. Cogn Comput 2016;8(2):246–260. https://doi.org/10.1007/s12559-015-9357-5.

    Article  Google Scholar 

  3. 3.

    Husain F. A survey of digital watermarking techniques for multimedia data. MIT Int J Electron Commun Eng 2012;2(1):37–43.

    Google Scholar 

  4. 4.

    Singh P, Chadha R. A survey of digital watermarking techniques, applications and attacks. Int J Eng Innov Technol (IJEIT) 2013;2(9):165–175.

    Google Scholar 

  5. 5.

    Wang X-Y, Wang CP, Yang H-Y, Niu P-P. A robust blind color image watermarking in quaternion fourier transform domain. J Systems Softw 2013;86(2):255–277. https://doi.org/10.1016/j.jss.2012.08.015.

    CAS  Article  Google Scholar 

  6. 6.

    Ali M, Ahn CW. An optimized watermarking technique based on self-adaptive {DE} in DWT–SVD transform domain. Signal Process 2014;94:545–556. https://doi.org/10.1016/j.sigpro.2013.07.024.

    Article  Google Scholar 

  7. 7.

    Ali M, Ahn CW, Pant M. A robust image watermarking technique using {SVD} and differential evolution in {DCT} domain. Optik - International Journal for Light and Electron Optics 2014; 125 (1): 428–434. https://doi.org/10.1016/j.ijleo.2013.06.082

    Article  Google Scholar 

  8. 8.

    Abdelhakim AM, Saleh HI, Nassar AM. A quality guaranteed robust image watermarking optimization with artificial bee colony. Expert Systems with Applications 2017;72:317–326. https://doi.org/10.1016/j.eswa.2016.10.056.

    Article  Google Scholar 

  9. 9.

    Zheng P-P, Feng J, Li Z, Zhou M-Q. A novel {SVD} and ls-svm combination algorithm for blind watermarking. Neurocomputing 2014; 142: 520–528. {SI} Computational Intelligence Techniques for New Product Development. https://doi.org/10.1016/j.neucom.2014.04.005.

    Article  Google Scholar 

  10. 10.

    Singh RP, Dabas N, Chaudhary V, Nagendra. Online sequential extreme learning machine for watermarking in {DWT} domain. Neurocomputing 2016;174(Part A):238–249. https://doi.org/10.1016/j.neucom.2015.03.115.

    Article  Google Scholar 

  11. 11.

    Tsai H-H, Lai Y-S, Lo S-C. A zero-watermark scheme with geometrical invariants using {SVM} and {PSO} against geometrical attacks for image protection. J Sys Softw 2013;86(2):335–348. https://doi.org/10.1016/j.jss.2012.08.040.

    Article  Google Scholar 

  12. 12.

    Sreenivas K, Kamkshi Prasad V. 2017. Fragile watermarking schemes for image authentication: a survey. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-017-0641-4.

  13. 13.

    Lee T-Y, Lin SD. Dual watermark for image tamper detection and recovery. Pattern Recogn 2008;41(11): 3497–3506. https://doi.org/10.1016/j.patcog.2008.05.003.

    Article  Google Scholar 

  14. 14.

    Hsu C-S, Tu S-F. Probability-based tampering detection scheme for digital images. Optics Commun 2010; 283(9):1737–1743. https://doi.org/10.1016/j.optcom.2009.12.073.

    CAS  Article  Google Scholar 

  15. 15.

    Qian Z, Feng G, Zhang X, Wang S. Image self-embedding with high-quality restoration capability. Digital Signal Process 2011; 21 (2): 278–286. https://doi.org/10.1016/j.dsp.2010.04.006

    Article  Google Scholar 

  16. 16.

    Zhang J, Zhang Q, Lv H. A novel image tamper localization and recovery algorithm based on watermarking technology. Optik - International Journal for Light and Electron Optics 2013;124(23):6367–6371. https://doi.org/10.1016/j.ijleo.2013.05.040.

    Article  Google Scholar 

  17. 17.

    Dadkhah S, Manaf AA, Hori Y, Hassanien AE, Sadeghi S. An effective svd-based image tampering detection and self-recovery using active watermarking. Signal Process Image Commun 2014;29(10):1197–1210. https://doi.org/10.1016/j.image.2014.09.001.

    Article  Google Scholar 

  18. 18.

    Zhang X, Xiao Y, Zhao Z. Self-embedding fragile watermarking based on DCT and fast fractal coding. Multimed Tools Appl 2015;74(15):5767–5786.

    Article  Google Scholar 

  19. 19.

    Hsu C-S, Tu S-F. Image tamper detection and recovery using adaptive embedding rules. Measurement 2016; 88:287–296. https://doi.org/10.1016/j.measurement.2016.03.053.

    Article  Google Scholar 

  20. 20.

    Cao F, An B, Wang J, Ye D, Wang H. Hierarchical recovery for tampered images based on watermark self-embedding. Displays 2017;46:52–60. https://doi.org/10.1016/j.displa.2017.01.001.

    Article  Google Scholar 

  21. 21.

    Yin Z, Niu X, Zhou Z, Tang J, Luo B. Improved reversible image authentication scheme. Cogn Comput 2016;8(5):890–899. https://doi.org/10.1007/s12559-016-9408-6.

    Article  Google Scholar 

  22. 22.

    Maeno K, Sun Q, Chang S-F, Suto M. New semi-fragile image authentication watermarking techniques using random bias and nonuniform quantization. IEEE Trans Multimed 2006;8(1):32–45.

    Article  Google Scholar 

  23. 23.

    Zhu X, Ho AT, Marziliano P. A new semi-fragile image watermarking with robust tampering restoration using irregular sampling. Signal Process Image Commun 2007;22(5):515–528. https://doi.org/10.1016/j.image.2007.03.004.

    Article  Google Scholar 

  24. 24.

    Chamlawi R, Khan A, Usman I. Authentication and recovery of images using multiple watermarks. Comput Electric Eng 2010;36(3):578–584. https://doi.org/10.1016/j.compeleceng.2009.12.003.

    Article  Google Scholar 

  25. 25.

    Qi X, Xin X. A quantization-based semi-fragile watermarking scheme for image content authentication. J Visual Commun Image Representation 2011;22(2):187–200. https://doi.org/10.1016/j.jvcir.2010.12.005.

    Article  Google Scholar 

  26. 26.

    Phadikar A, Maity SP, Mandal M. Novel wavelet-based {QIM} data hiding technique for tamper detection and correction of digital images. J Visual Commun Image Representation 2012; 23(3):454–466. https://doi.org/10.1016/j.jvcir.2012.01.005.

    Article  Google Scholar 

  27. 27.

    Rosales-Roldan L, Cedillo-Hernandez M, Nakano-Miyatake M, Perez-Meana H, Kurkoski B. Watermarking-based image authentication with recovery capability using halftoning technique. Signal Process Image Commun 2013;28(1):69–83. https://doi.org/10.1016/j.image.2012.11.006.

    Article  Google Scholar 

  28. 28.

    Preda RO. Semi-fragile watermarking for image authentication with sensitive tamper localization in the wavelet domain. Measurement 2013;46(1):367–373. https://doi.org/10.1016/j.measurement.2012.07.010.

    Article  Google Scholar 

  29. 29.

    Huo Y, He H, Chen F. A semi-fragile image watermarking algorithm with two-stage detection. Multimed Tools Appl 2014;72(1):123–149.

    Article  Google Scholar 

  30. 30.

    Qi X, Xin X. A singular-value-based semi-fragile watermarking scheme for image content authentication with tamper localization. J Visual Commun Image Representation 2015; 30: 312–327. https://doi.org/10.1016/j.jvcir.2015.05.006.

    Article  Google Scholar 

  31. 31.

    Benrhouma O, Hermassi H, Belghith S. Tamper detection and self-recovery scheme by DWT watermarking. Nonlinear Dynamics 2015;79(3):1817–1833.

    Article  Google Scholar 

  32. 32.

    Li C, Zhang A, Liu Z, Liao L, Huang D. Semi-fragile self-recoverable watermarking algorithm based on wavelet group quantization and double authentication. Multimed Tools Appl 2015;74(23):10581–10604.

    Article  Google Scholar 

  33. 33.

    Chetan K, Nirmala S. An intelligent blind semi-fragile watermarking scheme for effective authentication and tamper detection of digital images using curvelet transforms. SIRS; 2015. p. 199–213.

  34. 34.

    Bolourian Haghighi B, Taherinia AH, Mohajerzadeh AH. Trlg: fragile blind quad watermarking for image tamper detection and recovery by providing compact digests with optimized quality using LWT and GA. Inform Sci 2019;486:204–230. https://doi.org/10.1016/j.ins.2019.02.055. http://www.sciencedirect.com/science/article/pii/S0020025519301707.

    Article  Google Scholar 

  35. 35.

    Barani MJ, Valandar MY, Ayubi P. A new digital image tamper detection algorithm based on integer wavelet transform and secured by encrypted authentication sequence with 3D quantum map. Optik 2019;187:205–222. https://doi.org/10.1016/j.ijleo.2019.04.074. http://www.sciencedirect.com/science/article/pii/S0030402619305431.

    Article  Google Scholar 

  36. 36.

    Taherinia AH, Jamzad M. Blind dewatermarking method based on wavelet transform. Opt Eng 2011;50(5): 057006–057006–8. https://doi.org/10.1117/1.3581116.

    Article  Google Scholar 

  37. 37.

    Korus P. Digital image integrity – a survey of protection and verification techniques. Digital Signal Process 2017; 71:1–26. https://doi.org/10.1016/j.dsp.2017.08.009.

    Article  Google Scholar 

  38. 38.

    De K, Masilamani V. A no-reference image quality measure for blurred and compressed images using sparsity features. Cogn Comput 2018;10(6):980–990. https://doi.org/10.1007/s12559-018-9562-0.

    Article  Google Scholar 

  39. 39.

    Tiwari A, Sharma M, Tamrakar RK. Watermarking based image authentication and tamper detection algorithm using vector quantization approach. AEU - Int J Electron Commun 2017;78:114–123. https://doi.org/10.1016/j.aeue.2017.05.027. http://www.sciencedirect.com/science/article/pii/S1434841116310299.

    Article  Google Scholar 

  40. 40.

    Sweldens W. The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal 1998;29(2): 511–546.

    Article  Google Scholar 

  41. 41.

    Axelson P-E. 2003. Quality measures of halftoned images (a review).

  42. 42.

    Jarvis JF, Judice CN, Ninke W. A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput Graph Image Process 1976;5(1):13–40.

    Article  Google Scholar 

  43. 43.

    Neelamani R, Nowak RD, Baraniuk RG. 2002. Winhd: wavelet-based inverse halftoning via deconvolution. IEEE Transactions on Image Processing.

  44. 44.

    Lowe DG. Object recognition from local scale-invariant features. The proceedings of the seventh IEEE international conference on computer vision, 1999. IEEE; 1999. p. 1150–1157.

  45. 45.

    Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vision 2004;60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94.

    Article  Google Scholar 

  46. 46.

    Bay H, Ess A, Tuytelaars T, Gool LV. Speeded-up robust features (SURF). Comput Vis Image Understand 2008;110(3): 346–359. Similarity Matching in Computer Vision and Multimedia. https://doi.org/10.1016/j.cviu.2007.09.014.

    Article  Google Scholar 

  47. 47.

    Svozil D, Kvasnicka V, Pospichal J. Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems 1997;39(1):43–62. https://doi.org/10.1016/S0169-7439(97)00061-0.

    CAS  Article  Google Scholar 

  48. 48.

    Oneto L. Model selection and error estimation in a nutshell. Cham: Springer; 2020.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Taherinia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bolourian Haghighi, B., Taherinia, A.H. & Monsefi, R. An Effective Semi-fragile Watermarking Method for Image Authentication Based on Lifting Wavelet Transform and Feed-Forward Neural Network. Cogn Comput (2020). https://doi.org/10.1007/s12559-019-09700-9

Download citation

Keywords

  • Watermarking
  • Image authentication and restoration
  • Tamper detection and recovery
  • Lifting wavelet transform
  • Halftone technique
  • Feed-forward neural network