Early adjustments in mitochondrial structure and function in skeletal muscle to high altitude: design and rationale of the first study from the Kilimanjaro Biobank

Abstract

The physiological acclimatisation and adaptation processes in skeletal muscle at high altitude are of high medical and social relevance not only to understand limitations in physical performance at high altitude but also to understand the consequences of hypoxemia and tissue hypoxia in critically ill patients. Of particular importance in these processes are the alterations in content and function of mitochondria and myoglobin. The majority of studies on oxygen delivery to the tissues and utilisation by the cellular metabolism at high altitude were performed after prolonged stay at high altitude and in altitude-adapted highlanders. However, these studies do not provide insight in the sequence of events during the physiological acclimatisation and adaptation processes. Therefore, it is important to identify the early alterations in structure and function of the major determinants of the oxygen transport via myoglobin and oxygen utilisation by the mitochondria in skeletal muscle at high altitude. To achieve this goal, it is of interest to collect, analyse and compare quadriceps muscle biopsies and venous blood samples of climbers, guides and porters before and after climbing Mount Kilimanjaro and in participants of the Kilimanjaro Marathon before and after the run. The samples will be carefully documented and stored in the Kilimanjaro Biobank and will be made available to other research groups.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R, Zuurbier CJ (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573

    CAS  Article  Google Scholar 

  2. Bekedam MA, van Beek-Harmsen BJ, Boonstra A, van Mechelen W, Visser FC, van der Laarse WJ (2003) Maximum rate of oxygen consumption related to succinate dehydrogenase activity in skeletal muscle fibres of chronic heart failure patients and controls. Clin Physiol Funct Imaging 23:337–343

    CAS  Article  Google Scholar 

  3. Canato M, Scorzeto M, Giacomello M, Protasi F, Reggiani C, Stienen GJM (2010) Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proc Natl Acad Sci U S A 107:22326–22331

    CAS  Article  Google Scholar 

  4. Cerretelli P, Marzorati M, Marconi C (2009) Muscle bioenergetics and metabolic control at altitude. High Alt Med Biol 10:165–174

    CAS  Article  Google Scholar 

  5. Chicco AJ, Le CH, Gnaiger E, Dreyer HC, Muyskens JB, D’Alessandro A, Nemkov T, Hocker AD, Prenni JE, Wolfe LM, Sindt NM, Lovering AT, Subudhi AW, Roach RC (2018) Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: lessons from AltitudeOmics. J Biol Chem 293:6659–6671

    CAS  Article  Google Scholar 

  6. De Mol P, De Vries ST, De Koning EJP, Gans ROB, Tack CJ, Bilo HJG (2011) Increased insulin requirements during exercise at very high altitude in type 1 diabetes. Diabetes Care 34:591–595

    Article  Google Scholar 

  7. Dekker MCJ, Wilson MH, Howlett WP (2019) Mountain neurology. Pract Neurol 19:404–411

    Article  Google Scholar 

  8. Flueck M (2009) Plasticity of the muscle proteome to exercise at altitude. High Alt Med Biol 10:183–193

    CAS  Article  Google Scholar 

  9. Fowler ED, Benoist D, Drinkhill MJ, Stones R, Helmes M, Wüst RCI, Stienen GJM, Steele DS, White E (2015) Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension. J Mol Cell Cardiol 86:1–8

    CAS  Article  Google Scholar 

  10. Ge R-L, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, Witherspoon DJ, Xing J, Zhengzhong B, Prchal JT, Jorde LB, McClain DA (2012) Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol Genet Metab 106:244–247

    CAS  Article  Google Scholar 

  11. Greene MK, Kerr AM, McIntosh IB, Prescott RJ (1981) Acetazolamide in prevention of acute mountain sickness: a double-blind controlled cross-over study. Br Med J (Clin Res Ed) 283:811–813

    CAS  Article  Google Scholar 

  12. Harati MD, Williams RR, Movassaghi M, Hojat A, Lucey GM, Yong WH (2019) An introduction to starting a biobank. In Methods in Molecular Biology, pp. 7–16. Humana Press Inc.

  13. Hayot M, Michaud A, Koechlin C, Caron M-A, Leblanc P, Préfaut C, Maltais F (2005) Skeletal muscle microbiopsy: a validation study of a minimally invasive technique. Eur Respir J 25:431–440

    CAS  Article  Google Scholar 

  14. Hewitt R, Watson P (2013) Defining biobank. Biopreserv Biobank 11:309–315

    Article  Google Scholar 

  15. Hoppeler H, Howald H, Cerretelli P (1990) Human muscle structure after exposure to extreme altitude. Experientia 46:1185–1187

    CAS  Article  Google Scholar 

  16. Kauffmann F, Cambon-Thomsen A (2008) Tracing biological collections: between books and clinical trials. JAMA J Am Med Assoc 299:2316–2318

    CAS  Article  Google Scholar 

  17. Lal S, Li A, Allen D, Allen PD, Bannon P, Cartmill T, Cooke R, Farnsworth A, Keogh A, Dos Remedios C (2015) Best practice BioBanking of human heart tissue. Biophys Rev 7:399–406

    CAS  Article  Google Scholar 

  18. Lawrence JS, Reid SA (2016) Risk determinants of acute mountain sickness and summit success on a 6-day ascent of Mount Kilimanjaro (5895 m). Wilderness Environ Med 27:78–84

    Article  Google Scholar 

  19. Levett DZ, Radford EJ, Menassa DA, Graber EF, Morash AJ, Hoppeler H, Clarke K, Martin DS, Ferguson-Smith AC, Montgomery HE, Grocott MPW, Murray AJ (2012) Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J 26:1431–1441

    CAS  Article  Google Scholar 

  20. Levett DZH, Viganò A, Capitanio D, Vasso M, De Palma S, Moriggi M, Martin DS, Murray AJ, Cerretelli P, Grocott MPW, Gelfi C (2015) Changes in muscle proteomics in the course of the Caudwell Research Expedition to Mt. Everest. Proteomics 15:160–171

    CAS  Article  Google Scholar 

  21. Malacrida S, Giannella A, Ceolotto G, Reggiani C, Vezzoli A, Mrakic-Sposta S, Moretti S, Turner R, Falla M, Brugger H, Strapazzon G (2019) Transcription factors regulation in human peripheral white blood cells during hypobaric hypoxia exposure: an in-vivo experimental study. Sci Rep. https://doi.org/10.1038/s41598-019-46391-6

  22. Manders E, Ruiter G, Bogaard H-J, Stienen GJM, Vonk-Noordegraaf A, de Man FS, Ottenheijm CAC (2015) Quadriceps muscle fibre dysfunction in patients with pulmonary arterial hypertension. Eur Respir J 45:1737–1740

    Article  Google Scholar 

  23. Marcucci L, Canato M, Protasi F, Stienen GJM, Reggiani C (2018) A 3D diffusional-compartmental model of the calcium dynamics in cytosol, sarcoplasmic reticulum and mitochondria of murine skeletal muscle fibers ed. Csernoch L. PLoS One 13:e0201050

    Article  Google Scholar 

  24. Miranda-Silva D, Wüst RCI, Conceição G, Gonçalves-Rodrigues P, Gonçalves N, Gonçalves A, Kuster DWD, Leite-Moreira AF, van der Velden J, de Sousa Beleza JM, Magalhães J, Stienen GJM, Falcão-Pires I (2020) Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol. https://doi.org/10.1111/apha.13378

  25. Murray AJ, Horscroft JA (2016) Mitochondrial function at extreme high altitude. J Physiol 594:1137–1149

    CAS  Article  Google Scholar 

  26. Murray AJ, Montgomery HE, Feelisch M, Grocott MPW, Martin DS (2018) Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochem Soc Trans 46:599–607

    CAS  Article  Google Scholar 

  27. Robach P, Cairo G, Gelfi C, Bernuzzi F, Pilegaard H, Vigano A, Santambrogio P, Cerretelli P, Calbet JAL, Moutereau S, Lundby C (2007) Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood 109:4724–4731

    CAS  Article  Google Scholar 

  28. Ruiter G, Manders E, Happé CM, Schalij I, Groepenhoff H, Howard LS, Wilkins MR, Bogaard HJ, Westerhof N, van der Laarse WJ, de Man FS, Vonk-Noordegraaf A (2015) Intravenous iron therapy in patients with idiopathic pulmonary arterial hypertension and iron deficiency. Pulm Circ 5:466–472

    CAS  Article  Google Scholar 

  29. Scorzeto M, Giacomello M, Toniolo L, Canato M, Blaauw B, Paolini C, Protasi F, Reggiani C, Stienen GJM (2013) Mitochondrial Ca2+−handling in fast skeletal muscle fibers from wild type and calsequestrin-null mice. PLoS One 8:e74919

    CAS  Article  Google Scholar 

  30. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329:72–75

    CAS  Article  Google Scholar 

  31. Stienen GJ, Kiers JL, Bottinelli R, Reggiani C (1996) Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. J Physiol 493(Pt 2):299–307

    CAS  Article  Google Scholar 

  32. Van Adrichem EJ, Siebelink MJ, Rottier BL, Dilling JM, Kuiken G, Van Der Schans CP, Verschuuren EAM (2015) Tolerance of organ transplant recipients to physical activity during a high-altitude expedition: climbing Mount Kilimanjaro. PLoS One. https://doi.org/10.1371/journal.pone.0142641

  33. van Beek-Harmsen BJ, Bekedam MA, Feenstra HM, Visser FC, van der Laarse WJ (2004) Determination of myoglobin concentration and oxidative capacity in cryostat sections of human and rat skeletal muscle fibres and rat cardiomyocytes. Histochem Cell Biol 121:335–342

    Article  Google Scholar 

  34. van den Berg M, Hooijman PE, Beishuizen A, de Waard MC, Paul MA, Hartemink KJ, van Hees HWH, Lawlor MW, Brocca L, Bottinelli R, Pellegrino MA, Stienen GJM, Heunks LMA, Wüst RCI, Ottenheijm CAC (2017) Diaphragm atrophy and weakness in the absence of mitochondrial dysfunction in the critically ill. Am J Respir Crit Care Med 196:1544–1558

    Article  Google Scholar 

  35. van der Zwaard S, van der Laarse WJ, Weide G, Bloemers FW, Hofmijster MJ, Levels K, Noordhof DA, de Koning JJ, de Ruiter CJ, Jaspers RT (2018) Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body. FASEB J 32:2110–2123

    Article  Google Scholar 

  36. Viganò A, Ripamonti M, De Palma S, Capitanio D, Vasso M, Wait R, Lundby C, Cerretelli P, Gelfi C (2008) Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia. Proteomics 8:4668–4679

    Article  Google Scholar 

  37. Wüst RCI, Stienen GJM (2018) Successive contractile periods activate mitochondria at the onset of contractions in intact rat cardiac trabeculae. J Appl Physiol 124:1003–1011

    Article  Google Scholar 

  38. Wüst RCI, de Vries HJ, Wintjes LT, Rodenburg RJ, Niessen HWM, Stienen GJM (2016) Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure. Cardiovasc Res 111:362–372

    Article  Google Scholar 

  39. Wüst RCI, Helmes M, Martin JL, van der Wardt TJT, Musters RJP, van der Velden J, Stienen GJM (2017) Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes. J Physiol 595:2001–2019

    Article  Google Scholar 

Download references

Acknowledgements

I hereby thank Professor Cris Dos Remedios for his heroic efforts in starting, expanding and maintaining the Sydney Heart Bank and providing the group in Amsterdam with an incredible amount of cardiac tissue samples over a period of more than two decades. He and his team were pivotal in the design, conduction and successful completion of our joint research projects aimed to resolve the changes in contractile protein expression and function in various forms of heart failure. Following his footsteps and vision, I hope that the Kilimanjaro Biobank will grow and flourish.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. J. M. Stienen.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent will be obtained from all individual participants to be included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stienen, G.J.M. Early adjustments in mitochondrial structure and function in skeletal muscle to high altitude: design and rationale of the first study from the Kilimanjaro Biobank. Biophys Rev (2020). https://doi.org/10.1007/s12551-020-00710-8

Download citation

Keywords

  • Muscle adaptation
  • Mitochondria
  • Myoglobin
  • Physical fitness
  • Age