Skip to main content

Advertisement

Log in

Intermediate filaments in cardiomyopathy

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IF:

Intermediate filament

ID:

Intercalated disc

ER:

Endoplasmic reticulum

SR:

Sarcoplasmic reticulum

ECM:

Extracellular matrix

ESC:

Embryonic stem cell

CPC:

Cardiac progenitor cell

CM:

Cardiomyopathy

DCM:

Dilated cardiomyopathy

HCM:

Hypertrophic cardiomyopathy

RCM:

Restrictive cardiomyopathy

ARVD/C:

Arrhythmogenic right ventricular dysplasia/cardiomyopathy

HF:

Heart failure

DRM:

Desmin-related myopathy

LMNA:

Lamin A

αB-crystallin:

alpha Beta crystallin

αBCry:

alpha Beta crystallin

CryAB:

gene: crystallin, alpha Beta

R120GCryAB:

mutation R120G in CryAB

OPN:

Osteopontin

EMT:

Epithelial-to-mesenchymal transition

EndoMT:

Endothelial-to-mesenchymal transition

PTM:

Posttranslational modification

Des −/− :

Desmin knockout

MAM:

Mitochondria-associated ER/SR membranes

OM:

Outer mitochondrial membrane

IMS:

Inner mitochondrial space

IMM:

Inner mitochondrial membrane

ANT:

Adenine nucleotide translocator

CK:

Creatine kinase

DG:

Dystroglycan

PLB:

Phospholamban

RyR:

Ryanodine receptor

serca:

Sarcoplasmic reticulum calcium ATPase

SG:

Sarcoglycan

VDAC:

Voltage-dependent anion channel

MICOS:

mitochondrial contact site and cristae organizing system

LINC:

linker of the nucleoskeleton and the cytoskeleton

CMYA5:

Cardiomyopathy-associated protein 5

AKAP:

A-kinase anchor protein

shsp:

Small heat shock protein

TRIM:

Tripartite motif-containing protein

Bcl-2:

B-cell lymphoma 2

EC coupling:

Excitation-contraction coupling

CCD:

Conduction system disease

MAPK:

mitogen-activated protein kinase

ERK1/2:

extracellular signal-regulated kinase 1/2

JNK:

Jun N-terminal kinase

a.a.:

Amino acids

References

  • Ackbarow T, Sen D, Thaulow C, Buehler MJ (2009) Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS One 4(6):e6015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323(6088):560–564

    Article  PubMed  CAS  Google Scholar 

  • Agnetti G, Halperin VL, Kirk JA, Chakir K, Guo Y, Lund L, Nicolini F, Gherli T, Guarnieri C, Caldarera CM, Tomaselli GF, Kass DA, Van Eyk JE (2014) Desmin modifications associate with amyloid-like oligomers deposition in heart failure. Cardiovasc Res 102(1):24–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK (2011) Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4(4):469–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen RE, Rankin LL, Greene EA, Boxhorn LK, Johnson SE, Taylor RG, Pierce PR (1991) Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. J Cell Physiol 149(3):525–535

    Article  PubMed  CAS  Google Scholar 

  • Ansseau E, Eidahl JO, Lancelot C, Tassin A, Matteotti C, Yip C, Liu J, Leroy B, Hubeau C, Gerbaux C, Cloet S, Wauters A, Zorbo S, Meyer P, Pirson I, Laoudj-Chenivesse D, Wattiez R, Harper SQ, Belayew A, Coppee F (2016) Homologous transcription factors DUX4 and DUX4c associate with cytoplasmic proteins during muscle differentiation. PLoS One 11(1):e0146893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arbustini E, Pilotto A, Repetto A, Grasso M, Negri A, Diegoli M, Campana C, Scelsi L, Baldini E, Gavazzi A, Tavazzi L (2002) Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol 39(6):981–990

    Article  PubMed  CAS  Google Scholar 

  • Arimura T, Helbling-Leclerc A, Massart C, Varnous S, Niel F, Lacene E, Fromes Y, Toussaint M, Mura AM, Keller DI, Amthor H, Isnard R, Malissen M, Schwartz K, Bonne G (2005) Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet 14(1):155–169

    Article  PubMed  CAS  Google Scholar 

  • Azzimato V, Genneback N, Tabish AM, Buyandelger B, Knoll R (2016) Desmin, desminopathy and the complexity of genetics. J Mol Cell Cardiol 92:93–95

    Article  PubMed  CAS  Google Scholar 

  • Baer H, Mucke N, Kostareva A, Sjoberg G, Aebi U, Herrmann H (2005) Severe muscle disease-causing desmin mutations interfere with in vitro filament assembly at distinct stages. Proc Natl Acad Sci USA 102:15099–15104

  • Bagno L, Hatzistergos KE, Balkan W, Hare JM (2018) Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. In: Mol Ther 26(7):1610–1623

  • Bang ML, Gregorio C, Labeit S (2002) Molecular dissection of the interaction of desmin with the C-terminal region of nebulin. J Struct Biol 137(1–2):119–127

    Article  PubMed  CAS  Google Scholar 

  • Benes P, Maceckova V, Zdrahal Z, Konecna H, Zahradnickova E, Muzik J, Smarda J (2006) Role of vimentin in regulation of monocyte/macrophage differentiation. Differentiation 74(6):265–276

    Article  PubMed  CAS  Google Scholar 

  • Bennardini F, Wrzosek A, Chiesi M (1992) Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 71(2):288–294

    Article  PubMed  CAS  Google Scholar 

  • Benson MA, Tinsley CL, Blake DJ (2004) Myospryn is a novel binding partner for dysbindin in muscle. J Biol Chem 279(11):10450–10458

    Article  PubMed  CAS  Google Scholar 

  • Benson MA, Tinsley CL, Waite AJ, Carlisle FA, Sweet SMM, Ehler E, George CH, Lai FA, Martin-Rendon E, Blake DJ (2017) Ryanodine receptors are part of the myospryn complex in cardiac muscle. Sci Rep 7(1):6312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergman JE, Veenstra-Knol HE, van Essen AJ, van Ravenswaaij CM, den Dunnen WF, van den Wijngaard A, van Tintelen JP (2007) Two related Dutch families with a clinically variable presentation of cardioskeletal myopathy caused by a novel S13F mutation in the desmin gene. Eur J Med Genet 50(5):355–366

    Article  PubMed  Google Scholar 

  • Bermudez-Jimenez FJ, Carriel V, Brodehl A, Alaminos M, Campos A, Schirmer I, Milting H, Abril BA, Alvarez M, Lopez-Fernandez S, Garcia-Giustiniani D, Monserrat L, Tercedor L, Jimenez-Jaimez J (2018) Novel desmin mutation p.Glu401Asp impairs filament formation, disrupts cell membrane integrity, and causes severe arrhythmogenic left ventricular cardiomyopathy/dysplasia. Circulation 137(15):1595–1610

    Article  PubMed  CAS  Google Scholar 

  • Bhosle RC, Michele DE, Campbell KP, Li Z, Robson RM (2006) Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem Biophys Res Commun 346(3):768–777

    Article  PubMed  CAS  Google Scholar 

  • Blake DJ, Martin-Rendon E (2002) Intermediate filaments and the function of the dystrophin-protein complex. Trends Cardiovasc Med 12(5):224–228

    Article  PubMed  CAS  Google Scholar 

  • Bloch RJ, Capetanaki Y, O'Neill A, Reed P, Williams MW, Resneck WG, Porter NC, Ursitti JA (2002) Costameres: repeating structures at the sarcolemma of skeletal muscle. Clin Orthop 403:203–210

  • Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307(6):E469–E484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21(3):285–288

    Article  PubMed  CAS  Google Scholar 

  • Bonne G, Mercuri E, Muchir A, Urtizberea A, Becane HM, Recan D, Merlini L, Wehnert M, Boor R, Reuner U, Vorgerd M, Wicklein EM, Eymard B, Duboc D, Penisson-Besnier I, Cuisset JM, Ferrer X, Desguerre I, Lacombe D, Bushby K, Pollitt C, Toniolo D, Fardeau M, Schwartz K, Muntoni F (2000) Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol 48(2):170–180

    Article  PubMed  CAS  Google Scholar 

  • Brayson D, Shanahan CM (2017) Current insights into LMNA cardiomyopathies: existing models and missing LINCs. Nucleus 8(1):17–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, Saric T, Klauke B, Gummert J, Anselmetti D, Heilemann M, Nienhaus GU, Milting H (2012) Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants. J Biol Chem 287(19):16047–16057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodehl A, Dieding M, Klauke B, Dec E, Madaan S, Huang T, Gargus J, Fatima A, Saric T, Cakar H, Walhorn V, Tonsing K, Skrzipczyk T, Cebulla R, Gerdes D, Schulz U, Gummert J, Svendsen JH, Olesen MS, Anselmetti D, Christensen AH, Kimonis V, Milting H (2013) The novel desmin mutant p.A120D impairs filament formation, prevents intercalated disk localization, and causes sudden cardiac death. Circ Cardiovasc Genet 6(6):615–623

    Article  PubMed  CAS  Google Scholar 

  • Brodt C, Siegfried JD, Hofmeyer M, Martel J, Rampersaud E, Li D, Morales A, Hershberger RE (2013) Temporal relationship of conduction system disease and ventricular dysfunction in LMNA cardiomyopathy. J Card Fail 19(4):233–239

    Article  PubMed  PubMed Central  Google Scholar 

  • Brokopp CE, Schoenauer R, Richards P, Bauer S, Lohmann C, Emmert MY, Weber B, Winnik S, Aikawa E, Graves K, Genoni M, Vogt P, Luscher TF, Renner C, Hoerstrup SP, Matter CM (2011) Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur Heart J 32(21):2713–2722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cahill TJ, Choudhury RP, Riley PR (2017) Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 16(10):699–717

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Hong D, Zhu M, Li X, Wan H, Hong K (2013) A novel heterozygous deletion-insertion mutation in the desmin gene causes complete atrioventricular block and mild myopathy. Clin Neuropathol 32(1):9–15

    Article  PubMed  CAS  Google Scholar 

  • Capetanaki YG, Ngai J, Lazarides E (1984) Characterization and regulation in the expression of a gene coding for the intermediate filament protein desmin. Proc Natl Acad Sci U S A 81(22):6909–6913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capetanaki Y, Smith S, Heath JP (1989) Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation. J Cell Biol 109(4 Pt 1):1653–1664

    Article  PubMed  CAS  Google Scholar 

  • Capetanaki Y, Milner DJ, Weitzer G (1997) Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Funct 22(1):103–116

    Article  PubMed  CAS  Google Scholar 

  • Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313(10):2063–2076

    Article  PubMed  CAS  Google Scholar 

  • Capetanaki Y, Papathanasiou S, Diokmetzidou A, Vatsellas G, Tsikitis M (2015) Desmin related disease: a matter of cell survival failure. Curr Opin Cell Biol 32:113–120

    Article  PubMed  CAS  Google Scholar 

  • Captur G, Arbustini E, Bonne G, Syrris P, Mills K, Wahbi K, Mohiddin SA, McKenna WJ, Pettit S, Ho CY, Muchir A, Gissen P, Elliott PM, Moon JC (2018) Lamin and the heart. Heart 104(6):468–479

    Article  PubMed  Google Scholar 

  • Caron A, Chapon F (1999) Desmin phosphorylation abnormalities in cytoplasmic body and desmin-related myopathies. Muscle Nerve 22(8):1122–1125

    Article  PubMed  CAS  Google Scholar 

  • Cattin ME, Muchir A, Bonne G (2013) 'State-of-the-heart' of cardiac laminopathies. Curr Opin Cardiol 28(3):297–304

    Article  PubMed  Google Scholar 

  • Cetin N, Balci-Hayta B, Gundesli H, Korkusuz P, Purali N, Talim B, Tan E, Selcen D, Erdem-Ozdamar S, Dincer P (2013) A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet 50(7):437–443

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5(8):601–613

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Barlan K, Chou YH, Grin B, Lakonishok M, Serpinskaya AS, Shumaker DK, Herrmann H, Gelfand VI, Goldman RD (2009) The dynamic properties of intermediate filaments during organelle transport. J Cell Sci 122(Pt 16):2914–2923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen PY, Qin L, Barnes C, Charisse K, Yi T, Zhang X, Ali R, Medina PP, Yu J, Slack FJ, Anderson DG, Kotelianski V, Wang F, Tellides G, Simons M (2012) FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep 2(6):1684–1696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen PY, Qin L, Tellides G, Simons M (2014) Fibroblast growth factor receptor 1 is a key inhibitor of TGFbeta signaling in the endothelium. Sci Signal 7(344):ra90

    Article  PubMed  CAS  Google Scholar 

  • Cheng F, Eriksson JE (2016) Intermediate filaments and the regulation of cell motility during regeneration and wound healing. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022046

  • Chernoivanenko IS, Matveeva EA, Gelfand VI, Goldman RD, Minin AA (2015) Mitochondrial membrane potential is regulated by vimentin intermediate filaments. FASEB J 29(3):820–827

    Article  PubMed  CAS  Google Scholar 

  • Chernyatina AA, Nicolet S, Aebi U, Herrmann H, Strelkov SV (2012) Atomic structure of the vimentin central alpha-helical domain and its implications for intermediate filament assembly. Proc Natl Acad Sci U S A 109(34):13620–13625

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi JC, Worman HJ (2014) Nuclear envelope regulation of signaling cascades. Adv Exp Med Biol 773:187–206

    Article  PubMed  CAS  Google Scholar 

  • Choi JC, Muchir A, Wu W, Iwata S, Homma S, Morrow JP, Worman HJ (2012) Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci Transl Med 4(144):144ra102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung BM, Rotty JD, Coulombe PA (2013) Networking galore: intermediate filaments and cell migration. Curr Opin Cell Biol 25(5):600–612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clemen CS, Herrmann H, Strelkov SV, Schroder R (2013) Desminopathies: pathology and mechanisms. Acta Neuropathol 125(1):47–75

    Article  PubMed  CAS  Google Scholar 

  • Clemen CS, Stockigt F, Strucksberg KH, Chevessier F, Winter L, Schutz J, Bauer R, Thorweihe JM, Wenzel D, Schlotzer-Schrehardt U, Rasche V, Krsmanovic P, Katus HA, Rottbauer W, Just S, Muller OJ, Friedrich O, Meyer R, Herrmann H, Schrickel JW, Schroder R (2015) The toxic effect of R350P mutant desmin in striated muscle of man and mouse. Acta Neuropathol 129(2):297–315

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Zhai B, Gygi SP, Goldberg AL (2012) Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J Cell Biol 198(4):575–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79(4):679–694

    Article  PubMed  CAS  Google Scholar 

  • Conover GM, Gregorio CC (2011) The desmin coil 1B mutation K190A impairs nebulin Z-disc assembly and destabilizes actin thin filaments. J Cell Sci 124(Pt 20):3464–3476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conover GM, Henderson SN, Gregorio CC (2009) A myopathy-linked desmin mutation perturbs striated muscle actin filament architecture. Mol Biol Cell 20(3):834–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG (2000) Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342(11):770–780

    Article  PubMed  CAS  Google Scholar 

  • Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22(7):832–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Monte F, Agnetti G (2014) Protein post-translational modifications and misfolding: new concepts in heart failure. Proteomics Clin Appl 8(7–8):534–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diguet N, Mallat Y, Ladouce R, Clodic G, Prola A, Tritsch E, Blanc J, Larcher JC, Delcayre C, Samuel JL, Friguet B, Bolbach G, Li Z, Mericskay M (2011) Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. J Biol Chem 286(40):35007–35019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dingli F, Parys JB, Loew D, Saule S, Mery L (2012) Vimentin and the K-Ras-induced actin-binding protein control inositol-(1,4,5)-trisphosphate receptor redistribution during MDCK cell differentiation. J Cell Sci 125(Pt 22):5428–5440

    Article  PubMed  CAS  Google Scholar 

  • Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, Davos CH, Georgopoulos S, Anesti V, Vlahou A, Capetanaki Y (2016a) Desmin and alphaB-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci 129(20):3705–3720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diokmetzidou A, Tsikitis M, Nikouli S, Kloukina I, Tsoupri E, Papathanasiou S, Psarras S, Mavroidis M, Capetanaki Y (2016b) Strategies to study desmin in cardiac muscle and culture systems. Methods Enzymol 568:427–459

    Article  PubMed  CAS  Google Scholar 

  • dos Santos G, Rogel MR, Baker MA, Troken JR, Urich D, Morales-Nebreda L, Sennello JA, Kutuzov MA, Sitikov A, Davis JM, Lam AP, Cheresh P, Kamp D, Shumaker DK, Budinger GR, Ridge KM (2015) Vimentin regulates activation of the NLRP3 inflammasome. Nat Commun 6:6574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113(Pt 13):2455–2462

    PubMed  CAS  Google Scholar 

  • Eriksson JE, He T, Trejo-Skalli AV, Harmala-Brasken AS, Hellman J, Chou YH, Goldman RD (2004) Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 117(Pt 6):919–932

    Article  PubMed  CAS  Google Scholar 

  • Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119(7):1763–1771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Muehle G, Johnson W, McDonough B (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341(23):1715–1724

    Article  PubMed  CAS  Google Scholar 

  • Feldmann M, Maini RN (2003) Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9(10):1245–1250

    Article  PubMed  CAS  Google Scholar 

  • Fildes JE, Shaw SM, Yonan N, Williams SG (2009) The immune system and chronic heart failure: is the heart in control? J Am Coll Cardiol 53(12):1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Fountoulakis M, Soumaka E, Rapti K, Mavroidis M, Tsangaris G, Maris A, Weisleder N, Capetanaki Y (2005) Alterations in the heart mitochondrial proteome in a desmin null heart failure model. J Mol Cell Cardiol 38(3):461–474

    Article  PubMed  CAS  Google Scholar 

  • Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK (2006) Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev 20(4):486–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC, Molkentin JD (2018) Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest 128(5):2127–2143

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs C, Gawlas S, Heher P, Nikouli S, Paar H, Ivankovic M, Schultheis M, Klammer J, Gottschamel T, Capetanaki Y, Weitzer G (2016) Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene. Biol Open 5(2):140–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujii T, Takagi H, Arimoto M, Ootani H, Ueeda T (2000) Bundle formation of smooth muscle desmin intermediate filaments by calponin and its binding site on the desmin molecule. J Biochem 127(3):457–465

    Article  PubMed  CAS  Google Scholar 

  • Furst DO, Osborn M, Weber K (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109(2):517–527

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pelagio KP, Chen L, Joca HC, Ward C, Jonathan Lederer W, Bloch RJ (2018) Absence of synemin in mice causes structural and functional abnormalities in heart. J Mol Cell Cardiol 114:354–363

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Verdugo I, Synguelakis M, Degrouard J, Franco CA, Valot B, Zivy M, Chaby R, Tanfin Z (2008) Interaction of surfactant protein A with the intermediate filaments desmin and vimentin. Biochemistry 47(18):5127–5138

    Article  PubMed  CAS  Google Scholar 

  • Geisler N, Weber K (1982) The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J 1(12):1649–1656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georgatos SD, Blobel G (1987) Lamin B constitutes an intermediate filament attachment site at the nuclear envelope. J Cell Biol 105(1):117–125

    Article  PubMed  CAS  Google Scholar 

  • Georgatos SD, Weber K, Geisler N, Blobel G (1987) Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: evidence for a conserved site-specificity in intermediate filament-membrane interactions. Proc Natl Acad Sci U S A 84(19):6780–6784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gianni D, Li A, Tesco G, McKay KM, Moore J, Raygor K, Rota M, Gwathmey JK, Dec GW, Aretz T, Leri A, Semigran MJ, Anversa P, Macgillivray TE, Tanzi RE, del Monte F (2010) Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy. Circulation 121(10):1216–1226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283(44):29639–29643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldfarb LG, Dalakas MC (2009) Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest 119(7):1806–1813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldfarb LG, Vicart P, Goebel HH, Dalakas MC (2004) Desmin myopathy. Brain 127(Pt 4):723–734

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb LG, Olive M, Vicart P, Goebel HH (2008) Intermediate filament diseases: desminopathy. Adv Exp Med Biol 642:131–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldman RD, Cleland MM, Murthy SN, Mahammad S, Kuczmarski ER (2012) Inroads into the structure and function of intermediate filament networks. J Struct Biol 177(1):14–23

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JM, Navarro-Puche A, Casar B, Crespo P, Andres V (2008) Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol 183(4):653–666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gourdie RG, Dimmeler S, Kohl P (2016) Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov 15(9):620–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Granger BL, Lazarides E (1979) Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18(4):1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Granger BL, Lazarides E (1980) Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 22(3):727–738

    Article  PubMed  CAS  Google Scholar 

  • Guharoy M, Szabo B, Contreras Martos S, Kosol S, Tompa P (2013) Intrinsic structural disorder in cytoskeletal proteins. Cytoskeleton (Hoboken) 70(10):550–571

    Article  CAS  Google Scholar 

  • Happe CL, Engler AJ (2016) Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circ Res 118(2):296–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heling A, Zimmermann R, Kostin S, Maeno Y, Hein S, Devaux B, Bauer E, Klovekorn WP, Schlepper M, Schaper W, Schaper J (2000) Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res 86(8):846–853

    Article  PubMed  CAS  Google Scholar 

  • Henrion D, Terzi F, Matrougui K, Duriez M, Boulanger CM, Colucci-Guyon E, Babinet C, Briand P, Friedlander G, Poitevin P, Levy BI (1997) Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J Clin Invest 100(11):2909–2914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez DA, Bennett CM, Dunina-Barkovskaya L, Wedig T, Capetanaki Y, Herrmann H, Conover GM (2016) Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts. Mol Biol Cell 27(24):3869–3882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119(7):1772–1783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358(13):1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Hnia K, Tronchere H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J (2011) Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 121(1):70–85

    Article  PubMed  CAS  Google Scholar 

  • Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497(7450):507–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofner M, Hollrigl A, Puz S, Stary M, Weitzer G (2007) Desmin stimulates differentiation of cardiomyocytes and up-regulation of brachyury and nkx2.5. Differentiation 75(7):605–615

    Article  PubMed  CAS  Google Scholar 

  • Hollrigl A, Puz S, Al-Dubai H, Kim JU, Capetanaki Y, Weitzer G (2002) Amino-terminally truncated desmin rescues fusion of des(−/−) myoblasts but negatively affects cardiomyogenesis and smooth muscle development. FEBS Lett 523(1–3):229–233

    Article  PubMed  CAS  Google Scholar 

  • Hollrigl A, Hofner M, Stary M, Weitzer G (2007) Differentiation of cardiomyocytes requires functional serine residues within the amino-terminal domain of desmin. Differentiation 75(7):616–626

    Article  PubMed  CAS  Google Scholar 

  • Howman EV, Sullivan N, Poon EP, Britton JE, Hilton-Jones D, Davies KE (2003) Syncoilin accumulation in two patients with desmin-related myopathy. Neuromuscul Disord 13(1):42–48

    Article  PubMed  Google Scholar 

  • Hulsmans M, Sager HB, Roh JD, Valero-Munoz M, Houstis NE, Iwamoto Y, Sun Y, Wilson RM, Wojtkiewicz G, Tricot B, Osborne MT, Hung J, Vinegoni C, Naxerova K, Sosnovik DE, Zile MR, Bradshaw AD, Liao R, Tawakol A, Weissleder R, Rosenzweig A, Swirski FK, Sam F, Nahrendorf M (2018) Cardiac macrophages promote diastolic dysfunction. J Exp Med 215(2):423–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutchison CJ (2002) Lamins: building blocks or regulators of gene expression? Nat Rev Mol Cell Biol 3(11):848–858

    Article  PubMed  CAS  Google Scholar 

  • Hyder CL, Pallari HM, Kochin V, Eriksson JE (2008) Providing cellular signposts—post-translational modifications of intermediate filaments. FEBS Lett 582(14):2140–2148

    Article  PubMed  CAS  Google Scholar 

  • Imran TF, Shin HJ, Mathenge N, Wang F, Kim B, Joseph J, Gaziano JM, Djousse L (2017) Meta-analysis of the usefulness of plasma galectin-3 to predict the risk of mortality in patients with heart failure and in the general population. Am J Cardiol 119(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Inada H, Goto H, Tanabe K, Nishi Y, Kaibuchi K, Inagaki M (1998) Rho-associated kinase phosphorylates desmin, the myogenic intermediate filament protein, at unique amino-terminal sites. Biochem Biophys Res Commun 253(1):21–25

    Article  PubMed  CAS  Google Scholar 

  • Inada H, Togashi H, Nakamura Y, Kaibuchi K, Nagata K, Inagaki M (1999) Balance between activities of Rho kinase and type 1 protein phosphatase modulates turnover of phosphorylation and dynamics of desmin/vimentin filaments. J Biol Chem 274(49):34932–34939

    Article  PubMed  CAS  Google Scholar 

  • Jackson S, Schaefer J, Meinhardt M, Reichmann H (2015) Mitochondrial abnormalities in the myofibrillar myopathies. Eur J Neurol 22(11):1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Jahn D, Schramm S, Schnolzer M, Heilmann CJ, de Koster CG, Schutz W, Benavente R, Alsheimer M (2012) A truncated lamin A in the Lmna −/− mouse line: implications for the understanding of laminopathies. Nucleus 3(5):463–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Janue A, Odena MA, Oliveira E, Olive M, Ferrer I (2007) Desmin is oxidized and nitrated in affected muscles in myotilinopathies and desminopathies. J Neuropathol Exp Neurol 66(8):711–723

    Article  PubMed  CAS  Google Scholar 

  • Kachinsky AM, Dominov JA, Miller JB (1994) Myogenesis and the intermediate filament protein, nestin. Dev Biol 165(1):216–228

    Article  PubMed  CAS  Google Scholar 

  • Kartenbeck J, Franke WW, Moser JG, Stoffels U (1983) Specific attachment of desmin filaments to desmosomal plaques in cardiac myocytes. EMBO J 2(5):735–742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasahara A, Cipolat S, Chen Y, Dorn GW 2nd, Scorrano L (2013) Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 342(6159):734–737

    Article  PubMed  CAS  Google Scholar 

  • Kawajiri A, Yasui Y, Goto H, Tatsuka M, Takahashi M, Nagata K, Inagaki M (2003) Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol Biol Cell 14(4):1489–1500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawano F, Fujita R, Nakai N, Terada M, Ohira T, Ohira Y (2012) HSP25 can modulate myofibrillar desmin cytoskeleton following the phosphorylation at Ser15 in rat soleus muscle. J Appl Physiol (1985) 112(1):176–186

    Article  CAS  Google Scholar 

  • Kay L, Li Z, Mericskay M, Olivares J, Tranqui L, Fontaine E, Tiivel T, Sikk P, Kaambre T, Samuel JL, Rappaport L, Usson Y, Leverve X, Paulin D, Saks VA (1997) Study of regulation of mitochondrial respiration in vivo. An analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim Biophys Acta 1322(1):41–59

    Article  PubMed  CAS  Google Scholar 

  • Kielbasa OM, Reynolds JG, Wu CL, Snyder CM, Cho MY, Weiler H, Kandarian S, Naya FJ (2011) Myospryn is a calcineurin-interacting protein that negatively modulates slow-fiber-type transformation and skeletal muscle regeneration. FASEB J 25(7):2276–2286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HD (1996) Expression of intermediate filament desmin and vimentin in the human fetal heart. Anat Rec 246(2):271–278

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Louhghalam A, Lee G, Schafer BW, Wirtz D, Kim DH (2017) Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun 8(1):2123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230(2):230–242

    Article  PubMed  CAS  Google Scholar 

  • Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeold A, Fischer I, Paulin D, Schroder R, Wiche G (2008) Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J Cell Biol 181(4):667–681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kornreich M, Avinery R, Malka-Gibor E, Laser-Azogui A, Beck R (2015) Order and disorder in intermediate filament proteins. FEBS Lett 589(19 Pt A):2464–2476

    Article  PubMed  CAS  Google Scholar 

  • Koster S, Weitz DA, Goldman RD, Aebi U, Herrmann H (2015) Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr Opin Cell Biol 32C:82–91

    Article  CAS  Google Scholar 

  • Kouloumenta A, Mavroidis M, Capetanaki Y (2007) Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. J Biol Chem 282(48):35211–35221

    Article  PubMed  CAS  Google Scholar 

  • Kudryashova E, Wu J, Havton LA, Spencer MJ (2009) Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum Mol Genet 18(7):1353–1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuisk IR, Li H, Tran D, Capetanaki Y (1996) A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev Biol 174(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222

    Article  PubMed  CAS  Google Scholar 

  • Langley RC Jr, Cohen CM (1986) Association of spectrin with desmin intermediate filaments. J Cell Biochem 30(2):101–109

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Fontao L, Champliaud MF, Jaunin F, Frias MA, Favre B, Paulin D, Green KJ, Borradori L (2006) New insights into the molecular basis of desmoplakin- and desmin-related cardiomyopathies. J Cell Sci 119(Pt 23):4974–4985

    Article  PubMed  CAS  Google Scholar 

  • Li H, Capetanaki Y (1993) Regulation of the mouse desmin gene: transactivated by MyoD, myogenin, MRF4 and Myf5. Nucleic Acids Res 21(2):335–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Capetanaki Y (1994) An E box in the desmin promoter cooperates with the E box and MEF-2 sites of a distal enhancer to direct muscle-specific transcription. EMBO J 13(15):3580–3589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Colucci-Guyon E, Pincon-Raymond M, Mericskay M, Pournin S, Paulin D, Babinet C (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175(2):362–366

    Article  PubMed  CAS  Google Scholar 

  • Lian N, Wang W, Li L, Elefteriou F, Yang X (2009) Vimentin inhibits ATF4-mediated osteocalcin transcription and osteoblast differentiation. J Biol Chem 284(44):30518–30525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin F, Worman HJ (1993) Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem 268(22):16321–16326

    PubMed  CAS  Google Scholar 

  • Liu J, Chen Q, Huang W, Horak KM, Zheng H, Mestril R, Wang X (2006a) Impairment of the ubiquitin-proteasome system in desminopathy mouse hearts. FASEB J 20(2):362–364

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Tang M, Mestril R, Wang X (2006b) Aberrant protein aggregation is essential for a mutant desmin to impair the proteolytic function of the ubiquitin-proteasome system in cardiomyocytes. J Mol Cell Cardiol 40(4):451–454

    Article  PubMed  CAS  Google Scholar 

  • Lockard VG, Bloom S (1993) Trans-cellular desmin-lamin B intermediate filament network in cardiac myocytes. J Mol Cell Cardiol 25(3):303–309

    Article  PubMed  CAS  Google Scholar 

  • Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol 303(5):C512–C529

    Article  PubMed  CAS  Google Scholar 

  • Long CS (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6(2):81–94

    Article  PubMed  CAS  Google Scholar 

  • Loufrani L, Dubroca C, You D, Li Z, Levy B, Paulin D, Henrion D (2004) Absence of dystrophin in mice reduces NO-dependent vascular function and vascular density: total recovery after a treatment with the aminoglycoside gentamicin. Arterioscler Thromb Vasc Biol 24(4):671–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta SF, Lampugnani MG, Dejana E (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498(7455):492–496

    Article  PubMed  CAS  Google Scholar 

  • Maerkens A, Kley RA, Olive M, Theis V, van der Ven PF, Reimann J, Milting H, Schreiner A, Uszkoreit J, Eisenacher M, Barkovits K, Guttsches AK, Tonillo J, Kuhlmann K, Meyer HE, Schroder R, Tegenthoff M, Furst DO, Muller T, Goldfarb LG, Vorgerd M, Marcus K (2013) Differential proteomic analysis of abnormal intramyoplasmic aggregates in desminopathy. J Proteome 90:14–27

    Article  CAS  Google Scholar 

  • Mahesh B, Leong HS, McCormack A, Sarathchandra P, Holder A, Rose ML (2007) Autoantibodies to vimentin cause accelerated rejection of cardiac allografts. Am J Pathol 170(4):1415–1427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makihara H, Inaba H, Enomoto A, Tanaka H, Tomono Y, Ushida K, Goto M, Kurita K, Nishida Y, Kasahara K, Goto H, Inagaki M (2016) Desmin phosphorylation by Cdk1 is required for efficient separation of desmin intermediate filaments in mitosis and detected in murine embryonic/newborn muscle and human rhabdomyosarcoma tissues. Biochem Biophys Res Commun 478(3):1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Maloyan A, Sayegh J, Osinska H, Chua BH, Robbins J (2010) Manipulation of death pathways in desmin-related cardiomyopathy. Circ Res 106(9):1524–1532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mann DL (2003) Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 65:81–101

    Article  PubMed  CAS  Google Scholar 

  • Markel TA, Wang Y, Herrmann JL, Crisostomo PR, Wang M, Novotny NM, Herring CM, Tan J, Lahm T, Meldrum DR (2008) VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol 295(6):H2308–H2314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markwald RR, Fitzharris TP, Manasek FJ (1977) Structural development of endocardial cushions. Am J Anat 148(1):85–119

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Gonzalez J, Berrozpe M, Varela O, Badimon L (2001) Heterogeneity of smooth muscle cells in advanced human atherosclerotic plaques: intimal smooth muscle cells expressing a fibroblast surface protein are highly activated by platelet-released products. Eur J Clin Investig 31(11):939–949

    Article  CAS  Google Scholar 

  • Mavroidis M, Capetanaki Y (2002) Extensive induction of important mediators of fibrosis and dystrophic calcification in desmin-deficient cardiomyopathy. Am J Pathol 160(3):943–952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mavroidis M, Panagopoulou P, Kostavasili I, Weisleder N, Capetanaki Y (2008) A missense mutation in desmin tail domain linked to human dilated cardiomyopathy promotes cleavage of the head domain and abolishes its Z-disc localization. FASEB J 22(9):3318–3327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mavroidis M, Davos CH, Psarras S, Varela A, N CA, Katsimpoulas M, Kostavasili I, Maasch C, Vater A, van Tintelen JP, Capetanaki Y (2015) Complement system modulation as a target for treatment of arrhythmogenic cardiomyopathy. Basic Res Cardiol 110(3):27

    Article  PubMed  CAS  Google Scholar 

  • McNally EM, Barefield DY, Puckelwartz MJ (2015) The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab 21(2):174–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meijers WC, Lopez-Andres N, de Boer RA (2016) Galectin-3, cardiac function, and fibrosis. Am J Pathol 186(8):2232–2234

    Article  PubMed  Google Scholar 

  • Mermelstein CS, Martins ER, Portilho DM, Costa ML (2007) Association between the muscle-specific proteins desmin and caveolin-3 in muscle cells. Cell Tissue Res 327(2):343–351

    Article  PubMed  CAS  Google Scholar 

  • Millat G, Bouvagnet P, Chevalier P, Sebbag L, Dulac A, Dauphin C, Jouk PS, Delrue MA, Thambo JB, Le Metayer P, Seronde MF, Faivre L, Eicher JC, Rousson R (2011) Clinical and mutational spectrum in a cohort of 105 unrelated patients with dilated cardiomyopathy. Eur J Med Genet 54(6):e570–e575

    Article  PubMed  Google Scholar 

  • Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134(5):1255–1270

    Article  PubMed  CAS  Google Scholar 

  • Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes AM, Capetanaki Y (1999) The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 31(11):2063–2076

    Article  PubMed  CAS  Google Scholar 

  • Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150(6):1283–1298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N, Mu H, Pachori A, Dzau V (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104(5):1643–1648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitsui T, Kawajiri M, Kunishige M, Endo T, Akaike M, Aki K, Matsumoto T (2000) Functional association between nicotinic acetylcholine receptor and sarcomeric proteins via actin and desmin filaments. J Cell Biochem 77(4):584–595

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Thompson TG, Guyon JR, Lidov HG, Brosius M, Imamura M, Ozawa E, Watkins SC, Kunkel LM (2001) Desmuslin, an intermediate filament protein that interacts with alpha -dystrobrevin and desmin. Proc Natl Acad Sci U S A 98(11):6156–6161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore-Morris T, Guimaraes-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, Stallcup WB, Gu Y, Dalton ND, Cedenilla M, Gomez-Amaro R, Zhou B, Brenner DA, Peterson KL, Chen J, Evans SM (2014) Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest 124(7):2921–2934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM (2003) Vimentin is secreted by activated macrophages. Nat Cell Biol 5(1):59–63

    Article  PubMed  CAS  Google Scholar 

  • Mou L, Xu JY, Li W, Lei X, Wu Y, Xu G, Kong X, Xu GT (2010) Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis. Invest Ophthalmol Vis Sci 51(1):396–404

    Article  PubMed  Google Scholar 

  • Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, de Visser M, Schwartz K (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 9(9):1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ (2007) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest 117(5):1282–1293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ (2009) Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet 18(2):241–247

    Article  PubMed  CAS  Google Scholar 

  • Muchir A, Reilly SA, Wu W, Iwata S, Homma S, Bonne G, Worman HJ (2012a) Treatment with selumetinib preserves cardiac function and improves survival in cardiomyopathy caused by mutation in the lamin A/C gene. Cardiovasc Res 93(2):311–319

    Article  PubMed  CAS  Google Scholar 

  • Muchir A, Wu W, Choi JC, Iwata S, Morrow J, Homma S, Worman HJ (2012b) Abnormal p38alpha mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 21(19):4325–4333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munoz-Marmol AM, Strasser G, Isamat M, Coulombe PA, Yang Y, Roca X, Vela E, Mate JL, Coll J, Fernandez-Figueras MT, Navas-Palacios JJ, Ariza A, Fuchs E (1998) A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc Natl Acad Sci U S A 95(19):11312–11317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 8(2):156–162

    Article  PubMed  CAS  Google Scholar 

  • Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia D, Kesteven SH, Michalicek J, Otway R, Verheyen F, Rainer S, Stewart CL, Martin D, Feneley MP, Fatkin D (2004) Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest 113(3):357–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohnishi S, Ohgushi H, Kitamura S, Nagaya N (2007) Mesenchymal stem cells for the treatment of heart failure. Int J Hematol 86(1):17–21

    Article  PubMed  CAS  Google Scholar 

  • Olson EN, Capetanaki YG (1989) Developmental regulation of intermediate filament and actin mRNAs during myogenesis is disrupted by oncogenic ras genes. Oncogene 4(7):907–913

    PubMed  CAS  Google Scholar 

  • Omary MB (2009) IF-pathies: a broad spectrum of intermediate filament-associated diseases. J Clin Invest 119(7):1756–1762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O'Neill A, Williams MW, Resneck WG, Milner DJ, Capetanaki Y, Bloch RJ (2002) Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with the membrane skeleton at costameres. Mol Biol Cell 13(7):2347–2359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367

    Article  PubMed  Google Scholar 

  • Oshima RG (2007) Intermediate filaments: a historical perspective. Exp Cell Res 313(10):1981–1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otten E, Asimaki A, Maass A, van Langen IM, van der Wal A, de Jonge N, van den Berg MP, Saffitz JE, Wilde AA, Jongbloed JD, van Tintelen JP (2010) Desmin mutations as a cause of right ventricular heart failure affect the intercalated disks. Heart Rhythm 7(8):1058–1064

    Article  PubMed  Google Scholar 

  • Panagopoulou P, Davos CH, Milner DJ, Varela E, Cameron J, Mann DL, Capetanaki Y (2008) Desmin mediates TNF-alpha-induced aggregate formation and intercalated disk reorganization in heart failure. J Cell Biol 181(5):761–775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papathanasiou S, Rickelt S, Soriano ME, Schips TG, Maier HJ, Davos CH, Varela A, Kaklamanis L, Mann DL, Capetanaki Y (2015) Tumor necrosis factor-alpha confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med 21(9):1076–1084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, Peterson A, Li D, Jakobs P, Litt M, Porter CB, Rahko PS, Hershberger RE (2008) Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J 156(1):161–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pattison JS, Sanbe A, Maloyan A, Osinska H, Klevitsky R, Robbins J (2008) Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation 117(21):2743–2751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawelzyk P, Mucke N, Herrmann H, Willenbacher N (2014) Attractive interactions among intermediate filaments determine network mechanics in vitro. PLoS One 9(4):e93194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61

    Article  PubMed  CAS  Google Scholar 

  • Poon E, Howman EV, Newey SE, Davies KE (2002) Association of syncoilin and desmin: linking intermediate filament proteins to the dystrophin-associated protein complex. J Biol Chem 277(5):3433–3439

    Article  PubMed  CAS  Google Scholar 

  • Potthoff MJ, Olson EN, Bassel-Duby R (2007) Skeletal muscle remodeling. Curr Opin Rheumatol 19(6):542–549

    Article  PubMed  Google Scholar 

  • Psarras S, Mavroidis M, Sanoudou D, Davos CH, Xanthou G, Varela AE, Panoutsakopoulou V, Capetanaki Y (2012) Regulation of adverse remodelling by osteopontin in a genetic heart failure model. Eur Heart J 33(15):1954–1963

    Article  PubMed  CAS  Google Scholar 

  • Qiao L, Nishimura T, Shi L, Sessions D, Thrasher A, Trudell JR, Berry GJ, Pearl RG, Kao PN (2014) Endothelial fate mapping in mice with pulmonary hypertension. Circulation 129(6):692–703

    Article  PubMed  CAS  Google Scholar 

  • Quijano-Roy S, Mbieleu B, Bonnemann CG, Jeannet PY, Colomer J, Clarke NF, Cuisset JM, Roper H, De Meirleir L, D'Amico A, Ben Yaou R, Nascimento A, Barois A, Demay L, Bertini E, Ferreiro A, Sewry CA, Romero NB, Ryan M, Muntoni F, Guicheney P, Richard P, Bonne G, Estournet B (2008) De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol 64(2):177–186

    Article  PubMed  Google Scholar 

  • Rainer PP, Dong P, Sorge M, Fert-Bober J, Holewinski RJ, Wang Y, Foss CA, An SS, Baracca A, Solaini G, Glabe CG, Pomper MG, Van Eyk JE, Tomaselli GF, Paolocci N, Agnetti G (2018) Desmin phosphorylation triggers preamyloid oligomers formation and myocyte dysfunction in acquired heart failure. Circ Res 122(10):e75–e83

    Article  PubMed  CAS  Google Scholar 

  • Ralston E, Lu Z, Biscocho N, Soumaka E, Mavroidis M, Prats C, Lomo T, Capetanaki Y, Ploug T (2006) Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers. J Cell Physiol 209(3):874–882

    Article  PubMed  CAS  Google Scholar 

  • Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, Lazar J, Stiefel S, Hersch N, Schnakenberg U, Magin TM, Leube RE, Merkel R, Hoffmann B (2013) Keratins as the main component for the mechanical integrity of keratinocytes. Proc Natl Acad Sci U S A 110(46):18513–18518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Pechoux C, Bogaard HJ, Dorfmuller P, Remy S, Lecerf F, Plante S, Chat S, Fadel E, Houssaini A, Anegon I, Adnot S, Simonneau G, Humbert M, Cohen-Kaminsky S, Perros F (2015) Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131(11):1006–1018

    Article  PubMed  CAS  Google Scholar 

  • Rappaport L, Oliviero P, Samuel JL (1998) Cytoskeleton and mitochondrial morphology and function. Mol Cell Biochem 184(1–2):101–105

    Article  PubMed  CAS  Google Scholar 

  • Rapti K, Diokmetzidou A, Kloukina I, Milner DJ, Varela A, Davos CH, Capetanaki Y (2017) Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model. Free Radic Biol Med 110:206–218

    Article  PubMed  CAS  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  • Reynolds JG, McCalmon SA, Tomczyk T, Naya FJ (2007) Identification and mapping of protein kinase A binding sites in the costameric protein myospryn. Biochim Biophys Acta 1773(6):891–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105(2):365–378

    PubMed  CAS  Google Scholar 

  • Russell MA, Lund LM, Haber R, McKeegan K, Cianciola N, Bond M (2006) The intermediate filament protein, synemin, is an AKAP in the heart. Arch Biochem Biophys 456(2):204–215

    Article  PubMed  CAS  Google Scholar 

  • Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289(6):H2291–H2301

    Article  PubMed  CAS  Google Scholar 

  • Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A, Robbins J (2004) Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. Proc Natl Acad Sci U S A 101(27):10132–10136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanghvi-Shah R, Weber GF (2017) Intermediate filaments at the junction of mechanotransduction, migration, and development. Front Cell Dev Biol 5:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirmer I, Dieding M, Klauke B, Brodehl A, Gaertner-Rommel A, Walhorn V, Gummert J, Schulz U, Paluszkiewicz L, Anselmetti D, Milting H (2018) A novel desmin (DES) indel mutation causes severe atypical cardiomyopathy in combination with atrioventricular block and skeletal myopathy. Mol Genet Genomic Med 6(2):288–293

    Article  PubMed  CAS  Google Scholar 

  • Schofield AV, Bernard O (2013) Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 48(4):301–316

    Article  PubMed  CAS  Google Scholar 

  • Schreiber KH, Kennedy BK (2013) When lamins go bad: nuclear structure and disease. Cell 152(6):1365–1375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schroder R, Schoser B (2009) Myofibrillar myopathies: a clinical and myopathological guide. Brain Pathol 19(3):483–492

    Article  PubMed  CAS  Google Scholar 

  • Sejersen T, Lendahl U (1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 106(Pt 4):1291–1300

    PubMed  CAS  Google Scholar 

  • Selcen D (2011) Myofibrillar myopathies. Neuromuscul Disord 21(3):161–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Selcen D, Engel AG (2003) Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. Ann Neurol 54(6):804–810

    Article  PubMed  CAS  Google Scholar 

  • Seltmann K, Fritsch AW, Kas JA, Magin TM (2013) Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci U S A 110(46):18507–18512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah SB, Davis J, Weisleder N, Kostavassili I, McCulloch AD, Ralston E, Capetanaki Y, Lieber RL (2004) Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J 86(5):2993–3008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma M, Liu W, Perincheri S, Gunasekaran M, Mohanakumar T (2018) Exosomes expressing the self-antigens myosin and vimentin play an important role in syngeneic cardiac transplant rejection induced by antibodies to cardiac myosin. Am J Transplant 18(7):1626-1635

  • Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313(10):2098–2109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15(3):163–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subramanian K, Gianni D, Balla C, Assenza GE, Joshi M, Semigran MJ, Macgillivray TE, Van Eyk JE, Agnetti G, Paolocci N, Bamburg JR, Agrawal PB, Del Monte F (2015) Cofilin-2 phosphorylation and sequestration in myocardial aggregates: novel pathogenetic mechanisms for idiopathic dilated cardiomyopathy. J Am Coll Cardiol 65(12):1199–1214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun N, Critchley DR, Paulin D, Li Z, Robson RM (2008) Human alpha-synemin interacts directly with vinculin and metavinculin. Biochem J 409(3):657–667

    Article  PubMed  CAS  Google Scholar 

  • Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang DD, Gerlach BD (2017) The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 18(1):54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tapscott SJ, Bennett GS, Toyama Y, Kleinbart F, Holtzer H (1981) Intermediate filament proteins in the developing chick spinal cord. Dev Biol 86(1):40–54

    Article  PubMed  CAS  Google Scholar 

  • Taylor MR, Fain PR, Sinagra G, Robinson ML, Robertson AD, Carniel E, Di Lenarda A, Bohlmeyer TJ, Ferguson DA, Brodsky GL, Boucek MM, Lascor J, Moss AC, Li WL, Stetler GL, Muntoni F, Bristow MR, Mestroni L (2003) Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol 41(5):771–780

    Article  PubMed  CAS  Google Scholar 

  • Taylor MR, Slavov D, Ku L, Di Lenarda A, Sinagra G, Carniel E, Haubold K, Boucek MM, Ferguson D, Graw SL, Zhu X, Cavanaugh J, Sucharov CC, Long CS, Bristow MR, Lavori P, Mestroni L (2007) Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 115(10):1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Towbin JA, Bowles NE (2006) Dilated cardiomyopathy: a tale of cytoskeletal proteins and beyond. J Cardiovasc Electrophysiol 17(8):919–926

    Article  PubMed  Google Scholar 

  • Tsoupri E, Capetanaki Y (2013) Muyospryn: a multifunctional desmin-associated protein. Histochem Cell Biol 140(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • van Berlo JH, de Voogt WG, van der Kooi AJ, van Tintelen JP, Bonne G, Yaou RB, Duboc D, Rossenbacker T, Heidbuchel H, de Visser M, Crijns HJ, Pinto YM (2005) Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med (Berl) 83(1):79–83

    Article  CAS  Google Scholar 

  • van Spaendonck-Zwarts KY, van Hessem L, Jongbloed JD, de Walle HE, Capetanaki Y, van der Kooi AJ, van Langen IM, van den Berg MP, van Tintelen JP (2011) Desmin-related myopathy. Clin Genet 80(4):354–366

    Article  PubMed  CAS  Google Scholar 

  • Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D, Gharib M, Fraser SE (2009) Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7(11):e1000246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20(1):92–95

    Article  PubMed  CAS  Google Scholar 

  • von Gise A, Pu WT (2012) Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 110(12):1628–1645

    Article  CAS  Google Scholar 

  • Vorgias CE, Traub P (1986) Nucleic acid-binding activities of the intermediate filament subunit proteins desmin and glial fibrillary acidic protein. Z Naturforsch C 41(9–10):897–909

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Robbins J (2014) Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 71:16–24

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Tolstonog GV, Shoeman R, Traub P (2001a) Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins. Biochemistry 40(34):10342–10349

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Osinska H, Dorn GW 2nd, Nieman M, Lorenz JN, Gerdes AM, Witt S, Kimball T, Gulick J, Robbins J (2001b) Mouse model of desmin-related cardiomyopathy. Circulation 103(19):2402–2407

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Osinska H, Klevitsky R, Gerdes AM, Nieman M, Lorenz J, Hewett T, Robbins J (2001c) Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ Res 89(1):84–91

    Article  PubMed  CAS  Google Scholar 

  • Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22(7):1330–1337

    Article  PubMed  Google Scholar 

  • Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364(17):1643–1656

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Geisler N (1985) Intermediate filaments: structural conservation and divergence. Ann N Y Acad Sci 455:126–143

    Article  PubMed  CAS  Google Scholar 

  • Weisleder N, Soumaka E, Abbasi S, Taegtmeyer H, Capetanaki Y (2004a) Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement. J Mol Cell Cardiol 36(1):121–128

    Article  PubMed  CAS  Google Scholar 

  • Weisleder N, Taffet GE, Capetanaki Y (2004b) Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc Natl Acad Sci U S A 101(3):769–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wettstein G, Bellaye PS, Micheau O, Bonniaud P (2012) Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol 44(10):1680–1686

    Article  PubMed  CAS  Google Scholar 

  • Windoffer R, Beil M, Magin TM, Leube RE (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J Cell Biol 194(5):669–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter DL, Paulin D, Mericskay M, Li Z (2014) Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochem Cell Biol 141(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Witt SH, Labeit D, Granzier H, Labeit S, Witt CC (2005) Dimerization of the cardiac ankyrin protein CARP: implications for MARP titin-based signaling. J Muscle Res Cell Motil 26(6–8):401–408

    PubMed  CAS  Google Scholar 

  • Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325

    Article  PubMed  CAS  Google Scholar 

  • Worman HJ, Bonne G (2007) "Laminopathies": a wide spectrum of human diseases. Exp Cell Res 313(10):2121–2133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu W, Shan J, Bonne G, Worman HJ, Muchir A (2010) Pharmacological inhibition of c-Jun N-terminal kinase signaling prevents cardiomyopathy caused by mutation in LMNA gene. Biochim Biophys Acta 1802(7–8):632–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu W, Muchir A, Shan J, Bonne G, Worman HJ (2011) Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation 123(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117(3):524–529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao Y, Jumabay M, Ly A, Radparvar M, Cubberly MR, Bostrom KI (2013) A role for the endothelium in vascular calcification. Circ Res 113(5):495–504

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Zhang HM, Qiu Y, Hanson PJ, Hemida MG, Wei W, Hoodless PA, Chu F, Yang D (2014) Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components. PLoS Pathog 10(4):e1004070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zehner ZE, Paterson BM (1983) Vimentin gene expression during myogenesis: two functional transcripts from a single copy gene. Nucleic Acids Res 11(23):8317–8332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Sarge KD (2008) Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies. J Cell Biol 182(1):35–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziaeian B, Fonarow GC (2016) Epidemiology and aetiology of heart failure. Nat Rev Cardiol 13(6):368–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Zivlas C, Triposkiadis F, Psarras S, Giamouzis G, Skoularigis I, Chryssanthopoulos S, Kapelouzou A, Ramcharitar S, Barnes E, Papasteriadis E, Cokkinos D (2017) Left atrial volume index in patients with heart failure and severely impaired left ventricular systolic function: the role of established echocardiographic parameters, circulating cystatin C and galectin-3. Ther Adv Cardiovasc Dis 11(11):283–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

Author’s work described in this review was supported by COST BM1002 as well as PENED 01ED371, EPAN YB-22, and PEP ATT-39 and ESPA SYN 965, grant of Excellence II/ARISTEIA II 5342 grants from the Greek Secretariat for R&D and NIH-AR39617 grants to Y.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassemi Capetanaki.

Ethics declarations

Conflict of interest

Mary Tsikitis declares that she has no conflicts of interest. Zoi Galata declares that she has no conflicts of interest. Manolis Mavroidis declares that he has no conflicts of interest. Stelios Psarras declares that he has no conflicts of interest. Yassemi Capetanaki declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Heart Failure Due to Non-Myofibrillar Defects’ edited by Elisabeth Ehler and Katja Gehmlich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsikitis, M., Galata, Z., Mavroidis, M. et al. Intermediate filaments in cardiomyopathy. Biophys Rev 10, 1007–1031 (2018). https://doi.org/10.1007/s12551-018-0443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-018-0443-2

Keywords

Navigation