Skip to main content

Advertisement

Log in

Hypothesis: structural heterogeneity of the unfolded proteins originating from the coupling of the local clusters and the long-range distance distribution

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

We propose a hypothesis that explains two apparently contradicting observations for the heterogeneity of the unfolded proteins. First, the line confocal method of the single-molecule Förster resonance energy transfer (sm-FRET) spectroscopy revealed that the unfolded proteins possess broad peaks in the FRET efficiency plot, implying the significant heterogeneity that lasts longer than milliseconds. Second, the fluorescence correlation method demonstrated that the unfolded proteins fluctuate in the time scale shorter than 100 ns. To formulate the hypothesis, we first summarize the recent consensus for the structure and dynamics of the unfolded proteins. We next discuss the conventional method of the sm-FRET spectroscopy and its limitations for the analysis of the unfolded proteins, followed by the advantages of the line confocal method that revealed the heterogeneity. Finally, we propose that the structural heterogeneity formed by the local clustering of hydrophobic residues modulates the distribution of the long-range distance between the labeled chromophores, resulting in the broadening of the peak in the FRET efficiency plot. A clustering of hydrophobic residues around the chromophore might further contribute to the broadening. The proposed clusters are important for the understanding of protein folding mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abaskharon RM, Gai F (2016) Meandering down the energy landscape of protein folding: are we there yet? Biophys J 110:1924–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aznauryan M, Delgado L, Soranno A, Nettels D, Huang J, Labhardt AM, Grzesiek S, Schuler B (2016) Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc Natl Acad Sci U S A 113:E5389–E5398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxa MC, Haddadian EJ, Jumper JM, Freed KF, Sosnick TR (2014) Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations. Proc Natl Acad Sci U S A 111:15396–15401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernado P, Blanchard L, Timmins P, Marion D, Ruigrok RW, Blackledge M (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc Natl Acad Sci U S A 102:17002–17007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgia A, Wensley BG, Soranno A, Nettels D, Borgia MB, Hoffmann A, Pfeil SH, Lipman EA, Clarke J, Schuler B (2012) Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy. Nature Commun 3:1195 (9 pages)

    Article  Google Scholar 

  • Borgia A, Zheng W, Buholzer K, Borgia MB, Schüler A, Hofmann H, Soranno A, Nettels D, Gast K, Grishaev A, Best RB, Schuler B (2016) Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J Am Chem Soc 138:11714–11726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler BE (2012) Residual structure in unfolded proteins. Curr Opin Struct Biol 22:4–13

    Article  CAS  PubMed  Google Scholar 

  • Buckler DR, Haas E, Scheraga HA (1995) Analysis of the structure of ribonuclease A in native and partially denatured states by time-resolved noradiative dynamic excitation energy transfer between site-specific extrinsic probes. Biochemistry 34:15965–15978

    Article  CAS  PubMed  Google Scholar 

  • Buscaglia M, Lapidus LJ, Eaton WA, Hofrichter J (2006) Effects of denaturants on the dynamics of loop formation in polypeptides. Biophys J 91:276–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Ahsan SS, Santiago-Berrios MB, Abruña HD, Webb WW (2010) Mechanisms of quenching of Alexa fluorophores by natural amino acids. J Am Chem Soc 132:7244–7245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho J-H, Meng W, Sato S, Kim EY, Schindelin H, Raleigh DP (2014) Energetically significant networks of coupled interactions within an unfolded protein. Proc Natl Acad Sci U S A 111:12079–12084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar TA, Schaeffer RD, Daggett V, Bowler BE (2011) Manifestations of native topology in the denatured state ensemble of Rhodopseudomonas palustris cytochrome c’. Biochemistry 50:1029–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniz AA, Dahan M, Grunwell JR, Ha T, Faulhaber AE, Chemla DS, Weiss S, Schultz PG (1999) Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. Proc Natl Acad Sci U S A 96:3670–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS, Dawson PE, Schultz PG, Weiss S (2000) Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A 97:5179–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Felitsky D, Lietzow MA, Dyson HJ, Wright PE (2008) Modeling transient collapsed states of an unfolded protein to provide insights into early folding events. Proc Natl Acad Sci U S A 105:6278–6283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzkee NC, Rose GD (2004) Reassessing random-coil statistics in unfolded proteins. Proc Natl Acad Sci U S A 101:12497–12502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA (2017) Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs FRET measurements. Proc Natl Acad Sci USA 114:E6342–E6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen SJ, Hofrichter J, Szabo A, Eaton WA (1996) Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proc Natl Acad Sci U S A 93:11615–11617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haran G (2012) How, when and why proteins collapse: the relation to folding. Curr Opin Struct Biol 22:14–20

    Article  CAS  PubMed  Google Scholar 

  • Hoefling M, Lima N, Haenni D, Seidel CAM, Schuler B, Grubmüller H (2011) Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. PLoS One 6:e19791 (19 pages)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann H (2016) Understanding disordered and unfolded proteins using single-molecule FRET and polymer theory. Methods Appl Fluoresc 4:042003 (8 pages)

    Article  Google Scholar 

  • Hofmann H, Soranno A, Borgia A, Gast K, Nettels D, Schuler B (2012) Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc Natl Acad Sci U S A 109:16155–16160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden SJ, Uphoff S, Hohlbein J, Yadin D, Le Reste L, Britton OJ, Kapanidis AN (2010) Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys J 99:3102–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J-r, Grzesiek S (2010) Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea-denatured ubiquitin. J Am Chem Soc 132:694–705

    Article  CAS  PubMed  Google Scholar 

  • Jensen MR, Zweckstetter M, Huang J-r, Blackledge M (2014) Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem Rev 114:6632–6660

    Article  CAS  PubMed  Google Scholar 

  • Jha AK, Colubri A, Freed KF, Sosnick TR (2005) Statistical coil model of the unfolded state: resolving the reconciliation problem. Proc Natl Acad Sci U S A 102:13099–13104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinin S, Sisamakis E, Magennis SW, Felekyan S, Seidel CAM (2010) On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. J Phys Chem B 114:6197–6206

    Article  CAS  PubMed  Google Scholar 

  • Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wirmer J, Duchardt E, Ueda T, Imoto T, Smith LJ, Dobson CM, Schwalbe H (2002) Long-range interactions within a nonnative protein. Science 295:1719–1722

    Article  CAS  PubMed  Google Scholar 

  • Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM, Cingel N, Dothager RS, Seifert S, Thiyagarajan P, Sosnick TR, Hasan MZ, Pande VS, Ruczinski I, Doniach S, Plaxco KW. (2004) Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl. Acad. Sci. USA. 101, 12491–12496. Erratum in: (2005) Proc. Natl. Acad. Sci. USA. 102, 14475

  • Konuma T, Kimura T, Matsumoto S, Goto Y, Fujisawa T, Fersht AR, Takahashi S (2011) Time-resolved small-angle X-ray scattering study of the folding dynamics of barnase. J Mol Biol 405:1284–1294

    Article  CAS  PubMed  Google Scholar 

  • Kuzmenkina EV, Heyes CD, Nienhaus GU (2005) Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions. Proc Natl Acad Sci U S A 102:15471–15476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapidus LJ, Eaton WA, Hofrichter J (2000) Measuring the rate of intramolecular contact formation in polypeptides. Proc Natl Acad Sci U S A 97:7220–7225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maity H, Reddy G (2016) Folding of protein L with implications for collapse in the denatured state ensemble. J Am Chem Soc 138:2609–2616

    Article  CAS  PubMed  Google Scholar 

  • Meier S, Grzesiek S, Blackledge M (2007) Direct observation of dipolar couplings and hydrogen bonds across a β-hairpin in 8 M urea. J Am Chem Soc 129:9799–9807

    Article  CAS  PubMed  Google Scholar 

  • Meng W, Luan B, Lyle N, Pappu RV, Raleigh DP (2013) The denatured state ensemble contains significant local and long-range structure under native conditions: analysis of the N-terminal domain of ribosomal protein L9. Biochemistry 52:2662–2671

    Article  CAS  PubMed  Google Scholar 

  • Merchant KA, Best RB, Louis JM, Gopich IV, Eaton WA (2007) Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci U S A 104:1528–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moglich A, Joder K, Kiefhaber T (2006) End-to-end distance distributions and intrachain diffusion constants in unfolded polypeptide chains indicate intramolecular hydrogen bond formation. Proc. Natl. Acad. Sci. USA. 103, 12394–12399. Erratum in: (2008) Proc. Natl. Acad. Sci. USA. 105, 6787

  • Nettels D, Gopich IV, Hoffmann A, Schuler B (2007) Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc Natl Acad Sci U S A 104:2655–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi S, Lee AL, Edgell MH, Shortle D (2004) Direct demonstration of structural similarity between native and denatured eglin C. Biochemistry 43:4064–4070

    Article  CAS  PubMed  Google Scholar 

  • Oikawa H, Suzuki Y, Saito M, Kamagata K, Arai M, Takahashi S (2013) Microsecond dynamics of an unfolded protein by a line confocal tracking of single molecule fluorescence. Sci Rep 3:2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Oikawa H, Kamagata K, Arai M, Takahashi S (2015) Complexity of the folding transition of the B domain of protein A revealed by the high-speed tracking of single-molecule fluorescence time series. J Phys Chem B 119:6081–6091

    Article  CAS  PubMed  Google Scholar 

  • Oikawa H, Takahashi T, Kamonprasertsuk S, Takahashi S (2018) Microsecond resolved single-molecule FRET time series measurements based on line confocal optical system combined with hybrid photodetectors. Phys Chem Chem Phys 20:3277–3285

    Article  CAS  PubMed  Google Scholar 

  • Plaxco KW, Millett IS, Segel DJ, Doniach S, Baker D (1999) Chain collapse can occur concomitantly with the rate-limiting step in protein folding. Nat Struct Biol 6:554–556

    Article  CAS  PubMed  Google Scholar 

  • Riback JA, Bowman MA, Zmyslowski AM, Knoverek CR, Jumper JM, Hinshaw JR, Kaye EB, Freed KF, Clark PL, Sosnick TR (2017) Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358:238–241

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Kamonprasertsuk S, Suzuki S, Nanatani K, Oikawa H, Kushiro K, Takai M, Chen PT, Chen EH, Chen RP, Takahashi S (2016) Significant heterogeneity and slow dynamics of the unfolded ubiquitin detected by the line confocal method of single-molecule fluorescence spectroscopy. J Phys Chem B 120:8818–8829

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Yagi M, Konuma T, Takahashi S, Nishimura C, Goto Y (2017) Non-native α-helices in the initial folding intermediate facilitate the ordered assembly of the β-barrel in β-lactoglobulin. Biochemistry 56:4799–4807

    Article  CAS  PubMed  Google Scholar 

  • Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747

    Article  CAS  PubMed  Google Scholar 

  • Schuler B, Soranno A, Hofmann H, Nettels D (2016) Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu Rev Biophys 45:207–231

    Article  CAS  PubMed  Google Scholar 

  • Sherman E, Haran G (2006) Coil-globule transition in the denatured state of a small protein. Proc Natl Acad Sci U S A 103:11539–11543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shortle D (2002) The expanded denatured state: an ensemble of conformations trapped in a locally encoded topological space. Adv Protein Chem 62:1–23

    Article  CAS  PubMed  Google Scholar 

  • Shortle D, Ackerman MS (2001) Persistence of native-like topology in a denatured protein in 8 M urea. Science 293:487–489

    Article  CAS  PubMed  Google Scholar 

  • Song J, Gomes G-N, Shi T, Gradinaru CC, Chan HS (2017) Conformational heterogeneity and FRET data interpretation for dimensions of unfolded proteins. Biophys J 113:1012–1024

    Article  CAS  PubMed  Google Scholar 

  • Soranno A, Longhi R, Bellini T, Buscaglia M (2009) Kinetics of contact formation and end-to-end distance distributions of swollen disordered peptides. Biophys J 96:1515–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soranno A, Buchli B, Nettels D, Cheng RR, Müller-Späth S, Pfeil SH, Hoffmann A, Lipman EA, Makarov DE, Schuler B (2012) Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc Natl Acad Sci U S A 109:17800–17806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soranno A, Holla A, Dingfelder F, Nettels D, Makarov DE, Schuler B (2017) Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc Natl Acad Sci U S A 114:E1833–E1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosnick TR, Barrick D (2011) The folding of single domain proteins: have we reached a consensus? Curr Opin Struct Biol 21:12–24

    Article  CAS  PubMed  Google Scholar 

  • Sziegat F, Silvers R, Hähnke M, Jensen MR, Blackledge M, Wirmer-Bartoschek J, Schwalbe H (2012) Disentangling the coil: modulation of conformational and dynamic properties by site-directed mutation in the non-native state of hen egg white lysozyme. Biochemistry 51:3361–3372

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Kamagata K, Oikawa H (2016) Where the complex things are: single molecule and ensemble spectroscopic investigations of protein folding dynamics. Curr Opin Struct Biol 36:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tezuka-Kawakami T, Gell C, Brockwell DJ, Radford SE, Smith DA (2006) Urea-induced unfolding of the immunity protein Im9 monitored by spFRET. Biophys J 91:L42–L44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udgaonkar JB (2013) Polypeptide chain collapse and protein folding. Arch Biochem Biophys 531:24–33

    Article  CAS  PubMed  Google Scholar 

  • Waldauer SA, Bakajin O, Lapidus LJ (2010) Extremely slow intramolecular diffusion in unfolded protein L. Proc Natl Acad Sci U S A 107:13713–13717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins HM, Simon AJ, Sosnick TR, Lipman EA, Hjelm RP, Plaxco KW (2015) Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions. Proc Natl Acad Sci U S A 112:6631–6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Skrynnikov NR (2011) Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin? J Am Chem Soc 133:14614–14628

    Article  CAS  PubMed  Google Scholar 

  • Yoo TY, Meisburger SP, Hinshaw J, Pollack L, Haran G, Sosnick TR, Plaxco K (2012) Small-angle X-ray scattering and single-molecule FRET spectroscopy produce highly divergent views of the low-denaturant unfolded state. J Mol Biol 418:226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We dedicate this article to Prof. Fumio Arisaka. We thank our collaborators and the former and current members of our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Takahashi.

Ethics declarations

Funding

This work was supported by JSPS KAKENHI Grant Number JP25104007 (to S.T.) and JSPS KAKENHI Grant Number JP17K17608 (to H.O.).

Conflict of interest

Satoshi Takahashi declares that he has no conflict of interest. Aya Yoshida declares that she has no conflict of interest. Hiroyuki Oikawa declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on “Biomolecules to Bio-nanomachines-Fumio Arisaka 70th Birthday” edited by Damien Hall, Junichi Takagi and Haruki Nakamura

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, S., Yoshida, A. & Oikawa, H. Hypothesis: structural heterogeneity of the unfolded proteins originating from the coupling of the local clusters and the long-range distance distribution. Biophys Rev 10, 363–373 (2018). https://doi.org/10.1007/s12551-018-0405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-018-0405-8

Keywords

Navigation