Skip to main content
Log in

Mechanism of evolution by genetic assimilation

Equivalence and independence of genetic mutation and epigenetic modulation in phenotypic expression

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Conrad H. Waddington discovered the phenomenon of genetic assimilation through a series of experiments on fruit flies. In those experiments, artificially exerted environmental stress induced plastic phenotypic changes in the fruit flies, but after some generations, the same phenotypic variant started to appear without the environmental stress. Both the initial state (where the phenotypic changes were environmentally induced and plastic) and the final state (where the phenotypic changes were genetically fixed and constitutive) are experimental facts. However, it remains unclear how the environmentally induced phenotypic change in the first generation becomes genetically fixed in the central process of genetic assimilation itself. We have argued that the key to understanding the mechanism of genetic assimilation lies in epigenetics, and proposed the “cooperative model” in which the evolutionary process depends on both genetic and epigenetic factors. Evolutionary simulations based on the cooperative model reproduced the process of genetic assimilation. Detailed analysis of the trajectories has revealed genetic assimilation is a process in which epigenetically induced phenotypic changes are incrementally and statistically replaced with multiple minor genetic mutations through natural selection. In this scenario, epigenetic and genetic changes may be considered as mutually independent but equivalent in terms of their effects on phenotypic changes. This finding rejects the common (and confused) hypothesis that epigenetically induced phenotypic changes depend on genetic mutations. Furthermore, we argue that transgenerational epigenetic inheritance is not required for evolution by genetic assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alegria-Torres JA, Baccarelli A, Bollati V (2011) Epigenetics and lifestyle. Epigenomics 3:267–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Breitling LP, Yang R, Kom B, Burwinkel B, Brenner H (2011) Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 88:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheedipudi S, Gennolet O, Dobeva G (2014) Epigenetic inheritance of cell fates during embryonic development. Front Genet 5:19. https://doi.org/10.3389/fgene.2014.00019

    Article  PubMed  PubMed Central  Google Scholar 

  • Crispo E (2007) The Baldwin effect and genetic assimilation: revisiting two mechanisms evolutionary change mediated by phenotypic plasticity. Evolution 61:2469–2479

    Article  PubMed  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row Publishers, New York. reprinted in 2009 by Blackburn Press

    Google Scholar 

  • Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 23:192–199

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10:604–10:609. https://doi.org/10.1073/pnas.0500398102

    Article  CAS  Google Scholar 

  • Gibson G, Dworkin I (2004) Uncovering cryptic genetic variation. Nat Rev Genet 5:681–690

    Article  CAS  PubMed  Google Scholar 

  • Gilbert S, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine, and evloution. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Goldschmidt RB (1938) Physiological Genetics. McGraw-Hill, New York

    Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17:046–17:049

    Article  CAS  Google Scholar 

  • Ietswaart R, Wu Z, Dean C (2012) Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet 28:445–453

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanism, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Jones AL, Sung S (2014) Mechanisms underlying epigenetic regulation in Arabidopsis thaliana. Integr Comp Biol 54:61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  CAS  PubMed  Google Scholar 

  • Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J, Wray GA, Hoekstra HE, Futuyma DJ, Lenski RE, Mackay TFC, Schluter D, Strassmann JE (2014) Does evolutional theory need a rethink? Nature 514:161–164

    Article  CAS  PubMed  Google Scholar 

  • Lande R (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22:1435–1446. https://doi.org/10.1111/j.1420-9101.2009.01754.x

    Article  PubMed  Google Scholar 

  • Lickliter R (2014) Developmental evolution and the origins of phenotypic variation. Biomol Concepts 5:343–352

    Article  CAS  PubMed  Google Scholar 

  • Lindblom R, Ververis K, Tortorella SM, Karagiannis TC (2015) The early life origin theory in the development of cardiovascular disease and type 2 diabetes. Mol Biol Rep 42:791–797

    Article  CAS  PubMed  Google Scholar 

  • Lumey LH, Stein AD, Kahn HS, van der Pal-de Bruin KM, Blauw GJ, Zybert PA, Susser ES (2007) Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 36:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Matsuda R (1987) Animal evolution in changing environments: with special reference to abnormal metamorphosis. Wiley, London

    Google Scholar 

  • Moczek AP (2008) On the origins of novelty in development and evolution. Bioessays 30:432–447

    Article  PubMed  Google Scholar 

  • Müller GB (2007) Evo-Devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949

    Article  PubMed  Google Scholar 

  • Müller GB, Newman SA (2005) The innovation triad: an EvoDevo agenda. J Exp Zool B Mol Dev Evol 304:487–503

    Article  PubMed  Google Scholar 

  • Nishikawa K, Kinjo AR (2014) Cooperation between phenotypic plasticity and genetic mutations can account for the cumulative selection in evolution. BIOPHYSICS 10:99–108. https://doi.org/10.2142/biophysics.10.99

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishikawa K, Kinjo AR (2017) Essential role of long non-coding RNAs in de novo chromatin modifications: the genomic address code hypothesis. Biophys Rev 9:73–77. https://doi.org/10.1007/s12551-017-0259-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta K (2013) Epigenome and Life. Kodansha, Tokyo

    Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467. https://doi.org/10.1016/j.tree.2010.05.006

    Article  PubMed  Google Scholar 

  • Pigliucci M (2003) Epigenetics is back! Hsp90 and phenotypic variation. Cell Cycle 2:34–35

    Article  CAS  PubMed  Google Scholar 

  • Pigliucci M, Müller GB (eds) (2010) Evolution, the extended synthesis. MIT Press, Cambridge

    Google Scholar 

  • Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond B. Biol Sci 270:1433–1440

    Article  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491

    Article  PubMed  Google Scholar 

  • Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR (2011) Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70:141–145

    Article  PubMed  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  CAS  PubMed  Google Scholar 

  • Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Develop 22:50–55

    Article  CAS  Google Scholar 

  • Sawarkar R, Paro R (2013) Hsp90@chromatin.nucleus: an emerging hub of a networker. Trends Cell Biol 23:193–201

    Article  CAS  PubMed  Google Scholar 

  • Scharloo W (1991) Canalization: genetic and developmental aspects. Annu Rev Ecol Syst 22:65–93

    Article  Google Scholar 

  • Schlichting CD, Wund MA (2014) Phenotypic plasticity and epigenetic marking: An assessment of evidence for genetic accommodation. Evolution 68:656–672

    Article  PubMed  Google Scholar 

  • Simo-Riudalbas L, Esteller M (2014) Cancer genomics identifies disrupted epigenetic genes. Hum Genet 133:713–725

    Article  CAS  PubMed  Google Scholar 

  • Simon JC, Pfrender ME, Tollrian R, Tagu D, Colbourne JK (2011) Genomics of environmentally induced phenotypes in 2 extremely plastic arthropods. J Hered 102:512–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM (2003) Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 33:70–74

    Article  CAS  PubMed  Google Scholar 

  • Vickers MH (2014) Early life nutrition, epigenetics and programming of later life disease. Nutrients 6:2165–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Article  Google Scholar 

  • Waddington CH (1956) Genetic assimilation of the bithorax phenotype. Evolution 10:1–13

    Article  Google Scholar 

  • Waddington CH (1957) The strategy of the genes. Allen and Unwin, London

    Google Scholar 

  • Wagner A (2012) The role of robustness in phenotypic adaptation and innovation. Proc Biol Sci 279:1249–1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiner SA, Toth AL (2012) Epigenetics in social insects: a new direction for understanding the evolution of castes. Genet Res Int 2012:609810. https://doi.org/10.1155/2012/609810

    PubMed  PubMed Central  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • West-Eberhard MJ (2005a) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci USA 102:6543–6549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West-Eberhard MJ (2005b) Phenotypic accommodation: adaptive innovation due to developmental plasticity. J Exp Zool B Mol Dev Evol 304:610–618

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira R. Kinjo.

Ethics declarations

Conflict of interests

Ken Nishikawa declares that he has no conflict of interest. Akira R. Kinjo declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Biomolecules to Bio-nanomachines - Fumio Arisaka 70th Birthday’ edited by Damien Hall, Junichi Takagi and Haruki Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, K., Kinjo, A.R. Mechanism of evolution by genetic assimilation. Biophys Rev 10, 667–676 (2018). https://doi.org/10.1007/s12551-018-0403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-018-0403-x

Keywords

Navigation