Biophysical Reviews

, Volume 10, Issue 2, pp 677–686 | Cite as

Structural atlas of dynein motors at atomic resolution

  • Akiyuki Toda
  • Hideaki Tanaka
  • Genji Kurisu


Dynein motors are biologically important bio-nanomachines, and many atomic resolution structures of cytoplasmic dynein components from different organisms have been analyzed by X-ray crystallography, cryo-EM, and NMR spectroscopy. This review provides a historical perspective of structural studies of cytoplasmic and axonemal dynein including accessory proteins. We describe representative structural studies of every component of dynein and summarize them as a structural atlas that classifies the cytoplasmic and axonemal dyneins. Based on our review of all dynein structures in the Protein Data Bank, we raise two important points for understanding the two types of dynein motor and discuss the potential prospects of future structural studies.


Dynein Dynein subunits Axonemal dynein light chain-1 Molecular motor Structural analysis 



We thank the staff of the beamline BL44XU at SPring-8, Japan, for the help during data collection and Prof. Toshiki Yagi for providing the plasmid used in this study.

Funding information

This work was supported by a Grant-in-Aid for Scientific Research B (JP26291014) from the Japan Society for the Promotion of Science (JSPS) and JSPS Fellows Number JP17J07553.

Compliance with ethical standards

Conflict of interest

Akiyuki Toda declares that he has no conflict of interest. Hideaki Tanaka declares that he has no conflict of interest. Genji Kurisu declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Adams PD, Grosse-Kunstleve RW, Hung LW, Loerger TR, McCoy AJ, Moriarty NW, Reed RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58:1948–1954.CrossRefPubMedGoogle Scholar
  2. Benashski SE, Patel-King RS, King SM (1999) Light chain 1 from the Chlamydomonas outer dynein arm is a leucine-rich repeat protein associated with the motor domain of the gamma heavy chain. Biochemistry 38:7253–7264. CrossRefPubMedGoogle Scholar
  3. Benison G, Karplus PA, Barbar E (2007) Structure and dynamics of LC8 complexes with KXTQT-motif peptides: swallow and dynein intermediate chain compete for a common site. J Mol Biol 371:457–468. CrossRefPubMedGoogle Scholar
  4. Benison G, Karplus PA, Barbar E (2008) The interplay of ligand binding and quaternary structure in the diverse interactions of dynein light chain LC8. J Mol Biol 384:954–966. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bhabha G, Cheng HC, Zhang N et al (2014) Allosteric communication in the dynein motor domain. Cell 159:857–868. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bodor A, Radnai L, Hetényi C et al (2014) DYNLL2 dynein light chain binds to an extended linear motif of myosin 5a tail that has structural plasticity. Biochemistry 53:7107–7122. CrossRefPubMedGoogle Scholar
  7. Burgess SA, Walker ML, Sakakibara H et al (2003) Dynein structure and power stroke. Nature 421:715–718. CrossRefPubMedGoogle Scholar
  8. Carter AP, Cho C, Jin L, Vale RD (2011) Crystal structure of the dynein motor domain. Science 331(80):1159–1165. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carter AP, Garbarino JE, Wilson-Kubalek EM et al (2008) Structure and functional role of dynein’s microtubule-binding domain. Science 322:1691–1695. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clark S, Nyarko A, Löhr F et al (2016) The anchored flexibility model in LC8 motif recognition: insights from the Chica complex. Biochemistry 55:199–209. CrossRefPubMedGoogle Scholar
  11. Day CL, Puthalakath H, Skea G et al (2004) Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands. Biochem J 377:597–605. CrossRefPubMedPubMedCentralGoogle Scholar
  12. DeSantis ME, Cianfrocco MA, Htet ZM et al (2017) Lis1 has two opposing modes of regulating cytoplasmic dynein. Cell 170:1197–1208.e12. CrossRefPubMedGoogle Scholar
  13. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132.CrossRefPubMedGoogle Scholar
  14. Fan J-S, Zhang Q, Tochio H, et al (2001) Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain11 Edited by P. E. Wright. J Mol Biol 306:97–108. doi:
  15. Gallego P, Velazquez-Campoy A, Regue L et al (2013) Structural analysis of the regulation of the DYNLL/LC8 binding to Nek9 by phosphorylation. J Biol Chem 288:12283–12294. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Grissom PM, Vaisberg EA, McIntosh JR (2002) Identification of a novel light intermediate chain (D2LIC) for mammalian cytoplasmic dynein 2. Mol Biol Cell 13:817–829. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hall J, Karplus PA, Barbar E (2009) Multivalency in the assembly of intrinsically disordered dynein intermediate chain. J Biol Chem 284:33115–33121. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hughes SM, Vaughan KT, Herskovits JS, Vallee RB (1995) Molecular analysis of a cytoplasmic dynein light intermediate chain reveals homology to a family of ATPases. J Cell Sci 108(Pt 1):17–24PubMedGoogle Scholar
  19. Ichikawa M, Saito K, Yanagisawa H-A et al (2015) Axonemal dynein light chain-1 locates at the microtubule-binding domain of the γ heavy chain. Mol Biol Cell 26:4236–4247. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ilangovan U, Ding W, Zhong Y et al (2005) Structure and dynamics of the homodimeric dynein light chain km23. J Mol Biol 352:338–354. CrossRefPubMedGoogle Scholar
  21. Imai H, Shima T, Sutoh K et al (2015) Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules. Nat Commun 6:8179. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Inaba K (2007) Molecular basis of sperm flagellar axonemes: structural and evolutionary aspects. In: Annals of the New York Academy of Sciences. pp 506–526Google Scholar
  23. Kato YS, Yagi T, Harris SA et al (2014) Structure of the microtubule-binding domain of flagellar dynein. Structure 22:1628–1638. CrossRefPubMedGoogle Scholar
  24. Kikushima K, Kamiya R (2008) Clockwise translocation of microtubules by flagellar inner-arm dyneins in vitro. Biophys J 94:4014–4019. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim MH, Cooper DR, Oleksy A et al (2004) The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure 12:987–998. CrossRefPubMedGoogle Scholar
  26. Kon T, Imamula K, Roberts AJ et al (2009) Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 16:325–333. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kon T, Oyama T, Shimo-Kon R et al (2012) The 2.8 Å crystal structure of the dynein motor domain. Nature 484:345–350. CrossRefPubMedGoogle Scholar
  28. Kon T, Sutoh K, Kurisu G (2011) X-ray structure of a functional full-length dynein motor domain. Nat Struct Mol Biol 18:638–642. CrossRefPubMedGoogle Scholar
  29. Liang J, Jaffrey SR, Guo W et al (1999) Structure of the PIN/LC8 dimer with a bound peptide. Nat Struct Biol 6:735–740. CrossRefPubMedGoogle Scholar
  30. Lightcap CM, Sun S, Lear JD et al (2008) Biochemical and structural characterization of the Pak1-LC8 interaction. J Biol Chem 283:27314–27324. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lin J, Okada K, Raytchev M et al (2014) Structural mechanism of the dynein power stroke. Nat Cell Biol 16:479–485. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu JF, Wang ZX, Wang XQ et al (2006) Crystal structure of human dynein light chain Dnlc2A: structural insights into the interaction with IC74. Biochem Biophys Res Commun 349:1125–1129. CrossRefPubMedGoogle Scholar
  33. Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardwon JS, Richardson DC, (2003) Structure validation by Calpha geometry: phi, psi and Cbeta Deviation. Proteins 50:437-450.CrossRefPubMedGoogle Scholar
  34. Makokha M, Huang YJ, Montelione G et al (2004) The solution structure of the pH-induced monomer of dynein light-chain LC8 from Drosophila. Protein Sci 13:727–734. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Merino-Gracia J, Zamora-Carreras H, Bruix M, Rodríguez-Crespo I (2016) Molecular basis for the protein recognition specificity of the dynein light chain DYNLT1/Tctex1. J Biol Chem 291:20962–20975. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mullen GP, King SM, Wu H et al (2000) Solution structure of a dynein motor domain associated light chain. Nat Struct Biol 7:575–579. CrossRefPubMedGoogle Scholar
  37. Nishikawa Y, Inatomi M, Iwasaki H, Kurisu G (2016) Structural change in the dynein stalk region associated with two different affinities for the microtubule. J Mol Biol 428:1886–1896. CrossRefPubMedGoogle Scholar
  38. Nishikawa Y, Oyama T, Kamiya N et al (2014) Structure of the entire stalk region of the dynein motor domain. J Mol Biol 426:3232–3245. CrossRefPubMedGoogle Scholar
  39. Nishiura M, Kon T, Shiroguchi K et al (2004) A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules. J Biol Chem 279:22799–22802. CrossRefPubMedGoogle Scholar
  40. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326.CrossRefGoogle Scholar
  41. Painter J, Merritt EA (2006) Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr 62:439–450.CrossRefPubMedGoogle Scholar
  42. Patel-King RS, King SM (2009) An outer arm dynein light chain acts in a conformational switch for flagellar motility. J Cell Biol 186:283–295. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pazour GJ, Wilkerson CG, Witman GB (1998) A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 141:979–992. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Qureshi BM, Hofmann NE, Arroyo-Olarte RD et al (2013) Dynein light chain 8a of Toxoplasma gondii, a unique conoid-localized ß-strand-swapped homodimer, is required for an efficient parasite growth. FASEB J 27:1034–1047. CrossRefPubMedGoogle Scholar
  45. Rao L, Romes EM, Nicholas MP et al (2013) The yeast dynein Dyn2-Pac11 complex is a dynein dimerization/processivity factor: structural and single-molecule characterization. Mol Biol Cell 24:2362–2377. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rapali P, Radnai L, Süveges D et al (2011) Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. PLoS One.
  47. Redwine WB, Hernandez-Lopez R, Zou S et al (2012) Structural basis for microtubule binding and release by dynein. Science 337(80):1532–1536. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Roberts AJ, Kon T, Knight PJ et al (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14:713–726. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Romes EM, Tripathy A, Slep KC (2012) Structure of a yeast Dyn2-Nup159 complex and molecular basis for dynein light chain-nuclear pore interaction. J Biol Chem 287:15862–15873. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rompolas P, Patel-King RS, King SM (2010) An outer arm Dynein conformational switch is required for metachronal synchrony of motile cilia in planaria. Mol Biol Cell 21:3669–3679. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schmidt H, Gleave ES, Carter AP (2012) Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 19:492–497. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schmidt H, Zalyte R, Urnavicius L, Carter AP (2014) Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518:435–438. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schroeder CM, Ostrem JML, Hertz NT, Vale RD (2014) A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region. Elife 3:e03351. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Slevin LK, Romes EM, Dandulakis MG, Slep KC (2014) The mechanism of dynein light chain LC8-mediated oligomerization of the Ana2 centriole duplication factor. J Biol Chem 289:20727–20739. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Song J, Tyler RC, Lee MS et al (2005) Solution structure of isoform 1 of Roadblock/LC7, a light chain in the dynein complex. J Mol Biol 354:1043–1051. CrossRefPubMedGoogle Scholar
  56. Tarricone C, Perrina F, Monzani S et al (2004) Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44:809–821. PubMedGoogle Scholar
  57. Trokter M, Mucke N, Surrey T (2012) Reconstitution of the human cytoplasmic dynein complex. Proc Natl Acad Sci 109:20895–20900. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tynan SH, Gee MA, Vallee RB (2000) Distinct but overlapping sites within the cytoplasmic dynein heavy chain for dimerization and for intermediate chain and light intermediate chain binding. J Biol Chem 275:32769–32774. CrossRefPubMedGoogle Scholar
  59. Uchimura S, Fujii T, Takazaki H et al (2015) A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation. J Cell Biol 208:211–222. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Urnavicius L, Zhang K, Diamant AG et al (2015) The structure of the dynactin complex and its interaction with dynein. Science 347:1441–1446. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Vedadi M, Lew J, Artz J et al (2007) Genome-scale protein expression and structural biology of plasmodium falciparum and related apicomplexan organisms. Mol Biochem Parasitol 151:100–110. CrossRefPubMedGoogle Scholar
  62. Wang W, Lo KWH, Kan HM et al (2003) Structure of the monomeric 8-kDa dynein light chain and mechanism of the domain-swapped dimer assembly. J Biol Chem 278:41491–41499. CrossRefPubMedGoogle Scholar
  63. Williams JC, Roulhac PL, Roy AG et al (2007) Structural and thermodynamic characterization of a cytoplasmic dynein light chain-intermediate chain complex. Proc Natl Acad Sci U S A 104:10028–10033. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Williams JC, Siglin AE, Lightcap CM, Dawn A (2012) Structural analysis of dynein intermediate and light chains. In: Dyneins. pp 156–189Google Scholar
  65. Williams JC, Xie H, Hendrickson W a (2005) Crystal structure of dynein light chain TcTex-1. J Biol Chem 280:21981–21986. CrossRefPubMedGoogle Scholar
  66. Wu H, Blackledge M, Maciejewski MW et al (2003) Relaxation-based structure refinement and backbone molecular dynamics of the dynein motor domain-associated light chain. Biochemistry 42:57–71. CrossRefPubMedGoogle Scholar
  67. Wu H, Maciejewski MW, Takebe S, King SM (2005) Solution structure of the Tctex1 dimer reveals a mechanism for dynein-cargo interactions. Structure 13:213–223. CrossRefPubMedGoogle Scholar
  68. Yamaguchi S, Saito K, Sutoh M et al (2015) Torque generation by axonemal outer-arm dynein. Biophys J 108:872–879. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhang K, Foster HE, Rondelet A et al (2017) Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169:1303–1314.e18. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Protein ResearchOsaka UniversityOsakaJapan
  2. 2.Department of Biological Sciences, Graduate School of ScienceOsaka UniversityOsakaJapan

Personalised recommendations