Biophysical Reviews

, Volume 10, Issue 1, pp 49–67 | Cite as

Applications of functionalized nanomaterials in photodynamic therapy

  • Olayemi J. Fakayode
  • Ncediwe Tsolekile
  • Sandile P. Songca
  • Oluwatobi S. Oluwafemi


Specially designed functionalized nanomaterials such as superparamagnetic iron oxide, gold, quantum dots and up- and down-conversion lanthanide series nanoparticles have consistently and completely revolutionized the biomedical environment over the past few years due to their specially inferring properties, such as specific drug delivery, plasmonic effect, optical and imaging properties, therapeutic thermal energy productionand excellent irresistible cellular penetration. These properties have been used to improve many existing disease treatment modalities and have led to the development of better therapeutic approaches for the advancement of the treatment of critical human diseases, such as cancers and related malaise. In photodynamic therapy, for example, where the delivery of therapeutic agents should ideally avoid toxicity on nearby healthy cells, superparamagnetic iron oxide nanoparticles have been shown to be capable of making photodynamic therapy (PDT) prodrugs and their associative targeting moieties tumor-specific via their unique response to an external magnetic fields. In this review, the nanomaterials commonly employed for the enhancement of photodynamic therapy are discussed. The review further describes the various methods of synthesis and characterization of these nanomaterials and highlights challenges for improving the efficacy of PDT in the future.


Nanomaterials Photodynamic therapy Superparamagnetic iron oxide nanoparticles Gold nanoparticles Quantum dots Lanthanide 



This work was supported by the National Research Foundation (NRF), South Africa, under the Nanotechnology Flagship Programme (Grant no: 97983).

Compliance with ethical standards

Conflict of interest

Olayemi J. Fakayode declares that he has no conflict of interest. Ncediwe Tsolekile declares that she has no conflict of interest. Sandile P. Songca declares that he has no conflict of interest. Oluwatobi S. Oluwafemi declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abdurahman R, Yang CX, Yan XP (2016) Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chem Commun 52:13303–13306. CrossRefGoogle Scholar
  2. Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183. PubMedCrossRefGoogle Scholar
  3. Adarsh N, Avirah RR, Ramaiah D (2010) Tuning photosensitized singlet oxygen generation efficiency of novel Aza-BODIPY dyes. Org Lett 12:5720–5723. PubMedCrossRefGoogle Scholar
  4. Aljarrah K, Mhaidat NM, Al-Akhras MAH, Aldaher AN, Albiss B, Aledealat K, Alsheyab FM (2012) Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis. World J Surg Oncol 10:62. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allison RR, Moghissi K (2013) Photodynamic therapy ( PDT ): PDT mechanisms. Clin Endosc 46:24–29PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anand S, Ortel BJ, Pereira SP, Hasan T, Maytin EV (2012) Biomodulatory approaches to photodynamic therapy for solid tumors. Cancer Lett 326:8–16.
  7. Aphesteguy JC, Kurlyandskaya GV, de Celis JP, Safronov AP, Schegoleva NN (2015) Magnetite nanoparticles prepared by co-precipitation method in different conditions. Mater Chem Phys 161:243–249. CrossRefGoogle Scholar
  8. Arsalani N, Fattahi H, Nazarpoor M (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. eXPRESS. Polymer Lett 4:329–338. CrossRefGoogle Scholar
  9. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, Ghavami M, Shanehsazzadeh S, Dinarvand R (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B 143:224–232. CrossRefGoogle Scholar
  10. Aziz MH, Kumar R, Ahmad N (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms. Int J Oncol 23:17–28PubMedGoogle Scholar
  11. Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cells 31:295–302. PubMedPubMedCentralCrossRefGoogle Scholar
  12. Banfi S, Caruso E, Caprioli S, Mazzagatti L, Canti G, Ravizza R, Gariboldi M, Monti E (2004) Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Bioorg Med Chem 12:4853–4860. PubMedCrossRefGoogle Scholar
  13. Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9. CrossRefGoogle Scholar
  14. Behdadfar B, Kermanpur A, Sadeghi-Aliabadi H, del Puerto Morales M, Mozaffari M (2012) Synthesis of aqueous ferrofluids of ZnxFe3−xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications. J Magn Magn Mater 324:2211–2217. CrossRefGoogle Scholar
  15. Bera D, Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal:a review. Materials 3:2260–2345. PubMedCentralCrossRefGoogle Scholar
  16. Biju V, Mundayoor S, Omkumar RV, Anas A, Ishikawa M (2010) Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotech Adv 28:199–213. CrossRefGoogle Scholar
  17. Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. CrossRefGoogle Scholar
  18. Cai H, Yao P (2013) In situ preparation of gold nanoparticle-loaded lysozyme–dextran nanogels and applications for cell imaging and drug delivery. Nanoscale 5:2892–2900. PubMedCrossRefGoogle Scholar
  19. Cao Y, Dong H, Yang Z, Zhong X, Chen Y, Dai W, Zhang X (2017) Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl Mater Interfaces 9:159–166. PubMedCrossRefGoogle Scholar
  20. Cavalli F (2013) An appeal to world leaders: stop cancer now. Lancet 381:425–426. PubMedCrossRefGoogle Scholar
  21. Chairam S, Konkamdee W, Parakhun R (2015) Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction. J Saudi Chem Soc 1–8.
  22. Chang YP, Pinaud F, Antelman J, Weiss S (2008) Tracking bio-molecules in live cells using quantum dots. J Biophotonics 1:287–298. PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chang CH, Hsiao CF, Chang GC, Tsai YH, Chen YM, Huang MS, Su WC, Hsieh WS, Yang PC, Chen CJ, Hsiung C (2009) Interactive effect of cigarette smoking with human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) polymorphisms on the risk of lung cancer: a case-control study in Taiwan. Am J Epidemiol 170:695–702. PubMedCrossRefGoogle Scholar
  24. Chen H, Wang GD, Chuang YJ, Zhen Z, Chen X, Biddinger P, Hao Z, Liu F, Shen B, Pan Z, Xie J (2015) Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Lett 15:249–2256. Google Scholar
  25. Cheng Y, Doane TL, Chuang CH, Ziady A, Burda C (2014) Near infrared light-triggered drug generation and release from gold nanoparticle carriers for photodynamic therapy. Small 10:1799–1804. PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chiaviello A, Postiglione I, Palumbo G (2011) Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers 3:1014–1041. PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191:235–237. CrossRefGoogle Scholar
  28. Corot C, Robert P, Idée JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504. PubMedCrossRefGoogle Scholar
  29. Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-García A, Couleaud P, Miranda R, Belda-Iniesta C, Ayuso-Sacido A (2014) Engineering iron oxide nanoparticles for clinical settings. Nanoscale 1:1–20. Google Scholar
  30. Daghastanli NA, Itri R, Baptista MS (2008) Singlet oxygen reacts with 2′,7′-dichlorodihydrofluorescein and contributes to the formation of 2′,7′-dichlorofluorescein. Photochem Photobiol 84:1238–1243. PubMedCrossRefGoogle Scholar
  31. Daou TJ, Pourroy G, Bégin-Colin S, Grenèche JM, Ulhaq-Bouillet C, Legaré P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404. CrossRefGoogle Scholar
  32. Daou TJ, Pourroy G, Greneche JM, Bertin A, Felder-flesch D, Begin-colin S (2009) Water soluble dendronized iron oxide nanoparticles. Dalton Trans 21:4442–4449. CrossRefGoogle Scholar
  33. Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105. PubMedCrossRefGoogle Scholar
  34. Dhar R (2014) Synthesis and current applications of quantum dots: a review. Nanosci Nanotechnol Int J 4:32–38 ISSN: 2278-1374 Google Scholar
  35. Dong H, Tang S, Hao Y, Yu H, Dai W, Zhao G, Cao Y, Lu H, Zhang X, Ju H (2016) Fluorescent MoS2 quantum dots: ultrasonic preparation, up-conversion and down-conversion bioimaging, photodynamic therapy. ACS Appl Mater Interfaces 8:3107–3114. PubMedCrossRefGoogle Scholar
  36. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots — characterization, preparation and usage in biological Sy10stems. Int J Mol Sci 10:656–673. PubMedPubMedCentralCrossRefGoogle Scholar
  37. Eckstein N (2011) Platinum resistance in breast and ovarian cancer cell lines. J Exp Clin Cancer Res 30:91. PubMedPubMedCentralCrossRefGoogle Scholar
  38. Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J (2009) Green synthesis of gold nanoparticles with starch – glucose and application in bioelectrochemistry. J Mater Chem 19:7839–7847. CrossRefGoogle Scholar
  39. Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362. PubMedCrossRefGoogle Scholar
  40. Fontes A, Lira RB, Seabra MABL, Castro N, Santos BS (2012) Quantum dots in biomedical research. Biomed Eng Tech Appl Med:269–290
  41. Fowley C, Nomikou N, McHale AP, McCarron P, McCaughan B, Callan JF (2012) Water soluble quantum dots as hydrophilic carriers and two-photon excited energy donors in photodynamic therapy. J Mat Chem 22:6456–6462. CrossRefGoogle Scholar
  42. Gao B, Liu Y, Yin H, Li Y, Bai Q, Zhang L (2012) Water-soluble dendritic polyaspartic porphyrins: potential photosensitizers for photodynamic therapy. New J Chem 36:28. CrossRefGoogle Scholar
  43. Gariboldi MB, Ravizza R, Baranyai P, Caruso E, Banfi S, Meschini S, Monti E (2009) Photodynamic effects of novel 5,15-diaryl-tetrapyrrole derivatives on human colon carcinoma cells. Bioorg Med Chem 17:2009–2016. PubMedCrossRefGoogle Scholar
  44. Ge S, Shi X, Sun K, Li C, Baker JR, Banaszak Holl MM, Orr BG (2009) A facile hydrothermal synthesis of iron oxide Nanoparticles with Tunable magnetic properties. J Phys Chem C 113:13593–13599. CrossRefGoogle Scholar
  45. Goswami MM, Dey C, Bandyopadhyay A, Sarkar D, Ahir M (2016) Micelles driven magnetite (Fe3O4) hollow spheres and a study on AC magnetic properties for hyperthermia application. J Magn Magn Mater 417:376–381. CrossRefGoogle Scholar
  46. Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T (2014) Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis 7:9–18. PubMedPubMedCentralCrossRefGoogle Scholar
  47. Guo Y, Kumar M, Zhang P (2007) Nanoparticle-based photosensitizers under CW infrared excitation. Chem Mater 19:6071–6072. PubMedPubMedCentralCrossRefGoogle Scholar
  48. Han S, Guo Q, Xu M, Yuan Y, Shen L, Yao J, Liu W, Gu R (2012) Tunable fabrication on iron oxide / au / Ag nanostructures for surface enhanced Raman spectroscopy and magnetic enrichment. J Coll Interface Sci 378:51–57. CrossRefGoogle Scholar
  49. Haw CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int 36:1417–1422. CrossRefGoogle Scholar
  50. Hemmer E, Venkatachalam N, Hyodo H, Hattori A, Ebina Y, Kishimoto H, Soga K (2013) Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 5:11339–11361. PubMedCrossRefGoogle Scholar
  51. Hien NQ, Van Phu D, Duy NN, Quoc LA (2012) Radiation synthesis and characterization of hyaluronan capped gold nanoparticles. Carbohydr Polym 89:537–541. PubMedCrossRefGoogle Scholar
  52. Hirohara S, Oka C, Totani M, Obata M, Yuasa J, Ito H, Tamura M, Matsui H, Kakiuchi K, Kawai T, Kawaichi M, Tanihara M (2015) Synthesis, Photophysical properties, and biological evaluation of trans -bisthioglycosylated tetrakis(fluorophenyl)chlorin for photodynamic therapy. J Med Chem 58:8658–8670. PubMedCrossRefGoogle Scholar
  53. Hou Y, Yu J, Gao S (2003) Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J Mater Chem 13:1983. CrossRefGoogle Scholar
  54. Hu Z, Nancy O, Hamblin MR (2014) Photodynamic therapy as an emerging treatment modality for cancer and non-cancer diseases. J Anal Bioanal Technol:1–3.
  55. Huang Z (2005) A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 4:283–293. PubMedPubMedCentralCrossRefGoogle Scholar
  56. Huang X, El-sayed MA (2011) Plasmonic photothermal therapy (PPTT). Alexandria J Med 47:1–9. CrossRefGoogle Scholar
  57. Huang X, Jain PK, El-Sayed IH, El-Sayed M (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228. PubMedCrossRefGoogle Scholar
  58. Huang H, Li Y, Li C, Wang Y, Sun Y, Wang J (2013) A novel anti-VEGF targeting and MRI-visible smart drug delivery system for specific diagnosis and therapy of liver cancer. Macromol Biosci 13:1358–1368. PubMedCrossRefGoogle Scholar
  59. Hussain ST, Iqbal M, Mazhar M (2009) Size control synthesis of starch capped-gold nanoparticles. J Nanopart Res 11:1383–1391. CrossRefGoogle Scholar
  60. Ichikawa K, Hikita T, Maeda N, Yonezawa S, Takeuchi Y, Asai T, Namba Y, Oku N (2005) Antiangiogenic photodynamic therapy (PDT) by using long-circulating liposomes modified with peptide specific to angiogenic vessels. Biochim Biophys Acta Biomembr 1669:69–74. CrossRefGoogle Scholar
  61. Iram M, Guo C, Guan Y, Ishfaq A, Liu H (2010) Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mater 181:1039–1050. PubMedCrossRefGoogle Scholar
  62. Jang B, Park J, Tung C, Kim I, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094PubMedCrossRefGoogle Scholar
  63. Jin S, Hu Y, Gu Z, Liu L, Wu HC (2011) Application of quantum dots in biological imaging. J Nanomater 2011:1–13. CrossRefGoogle Scholar
  64. Jing T, Fu L, Liu L, Yan L (2016) A reduction-responsive polypeptide nanogel encapsulating NIR photosensitizer for imaging guided photodynamic therapy. Polym Chem 7:951–957. CrossRefGoogle Scholar
  65. Jolivet JP, Tronc É, Chanéac C (2002) Synthesis of iron oxide-based magnetic nanomaterials and composites. C R Chim 5:659–664. CrossRefGoogle Scholar
  66. Kanavos P (2006) The rising burden of cancer in the developing world. Ann Oncol 17.
  67. Katti KK, Kattumuri V, Bhaskaran S, Kattesh V, Katti A, Kannan R (2009) Facile and general method for synthesis of sugar coated gold nanoparticles. Int J Green Nanotechnol Biomed 1:53–59. CrossRefGoogle Scholar
  68. Katz IT, Wright AA (2006) Preventing cervical cancer in the developing world.N Engl J med 354:1110.
  69. Kazeminezhad I, Mosivand S (2014) Phase transition of electrooxidized Fe 3O4to γ and α-Fe2O3 nanoparticles using sintering treatment. Acta Phys Pol A 125:1210–1214. CrossRefGoogle Scholar
  70. Kikuchi T, Kasuya R, Endo S, Nakamura A, Takai T, Metzler-Nolte N, Tohji K, Balachandran J (2011) Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia. J Magn Magn Mater 323:1216–1222. CrossRefGoogle Scholar
  71. Kim J, Shin J, Young I, Myung-haing C (2012) Magnetic nanoparticles: an update of application for drug delivery and possible toxic. Arch Toxicol 86:685–700. PubMedCrossRefGoogle Scholar
  72. Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C (2012) Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun 425:393–397. PubMedCrossRefGoogle Scholar
  73. Lee YT,Woo K (2006) Preparation of water-dispersible and biocompatible iron oxide nanoparticles for MRI agent’, in 2006 I.E. Nanotechnology Materials and Devices Conference, NMDC 454–455.
  74. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383–7389. PubMedCrossRefGoogle Scholar
  75. Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY, Kang HW, Jon S (2007) Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 129:12739–12745. PubMedCrossRefGoogle Scholar
  76. Lemon CM, Karnas E, Bawendi MG, Nocera DG (2013) Two-photon oxygen sensing with quantum dot-porphyrin conjugates. Inorg Chem 52:10394–10406 PubMedCrossRefGoogle Scholar
  77. Li Z, Wang C, Cheng L, Gong H, Yin S, Gong Q, Li Y, Liu Z (2013) PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials 4:9160–9170. CrossRefGoogle Scholar
  78. Li H, Li Z, Liu L, Lu T, Wang Y (2015a) An efficient gold nanocarrier for combined chemo- photodynamic therapy on tumour cells. RSC Adv 5:4831–34838. CrossRefGoogle Scholar
  79. Li H, Li Z, Liu L, Lu T, Wang Y (2015b) An efficient gold nanocarrier for combined chemo-photodynamic therapy on tumour cells. RSC Adv 5:34831–34838. CrossRefGoogle Scholar
  80. Liu HL, Sonn CH, Wu JH, Lee KM, Kim YK (2008) Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials 29:4003–4011. PubMedCrossRefGoogle Scholar
  81. Lu W, Shen Y, Xie A, Zhang W (2010a) Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322:1828–1833. CrossRefGoogle Scholar
  82. Lu W, Shen Y, Xie A, Zhang W (2010b) Green synthesis and characterization of superparamagnetic Fe 3 O 4 nanoparticles. J Magn Magn Mater 322:1828–1833. CrossRefGoogle Scholar
  83. Lu Z, Zhang X, Wu Z, Zhai T, Xue Y, Mei L, Li C (2014) BODIPY-based macromolecular photosensitizer with selective recognition and enhanced anticancer efficiency. RSC Adv 4:19495–19501. CrossRefGoogle Scholar
  84. Malik P, Gulia S, Kakkar R (2013) Quantum dots for diagnosis of cancers. Adv Mat Lett 4:811–822.
  85. Mandal G, Darragh M, Wang YA, Heyes CD (2013) Cadmium-free quantum dots as time-gated bioimagingin highly-autofluorescent human breast cancer cells. Chem Commun 49:624–626. CrossRefGoogle Scholar
  86. Master A, Livingston M, Gupta AS (2013) Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J Control Release 168:88–102. PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mccarthy JR, Bhaumik J, Weissleder R (2009) High-yielding syntheses of hydrophilic conjugatable chlorins and bacteriochlorins. Org Biomol Chem 7:3430–3436. PubMedPubMedCentralCrossRefGoogle Scholar
  88. Meyers JD, Cheng Y, Broome AM, Agnes RS, Schluchter MD, Margevicius S, Wang X, Kenney ME, Burda C, Basilion JP (2015) Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact 32:448–457. PubMedCrossRefGoogle Scholar
  89. Mohammad F, Balaji G, Weber A, Uppu R, Kumar C (2010) Influence of gold nanoshell on hyperthermia of super paramagnetic iron oxide nanoparticles (SPIONs). J Phys Chem C 114:19194–19201. CrossRefGoogle Scholar
  90. Mohan S, Oluwafemi OS, Songca SP, Osibote O, George SC, Kalarikkal N, Thomas S (2014) Facile synthesis of transparent and fluorescent epoxy–CdSe–CdS–ZnS core–multi shell polymer nanocomposites. New J Chem 38:155. CrossRefGoogle Scholar
  91. Monárrez-Cordero B, Amézaga-Madrid P, Antúnez-Flores W, Leyva-Porras C, Pizá-Ruiz P, Miki-Yoshida M (2014) Highly efficient removal of arsenic metal ions with high superficial area hollow magnetite nanoparticles synthetized by AACVD method. J Alloys Compd 586:520–525. CrossRefGoogle Scholar
  92. Mulens V, Morales MDP, Barber DF (2013) Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review. J Nanomater:1–14.
  93. Muñoz de Escalona M, Sáez-Fernández E, Prados JC, Melguizo C, Arias JL (2016) Magnetic solid lipid nanoparticles in hyperthermia against colon cancer. Int J Pharm 504:11–19. PubMedCrossRefGoogle Scholar
  94. Mürbe J, Rechtenbach A, Töpfer J (2008) Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater Chem Phys 110:26–433. CrossRefGoogle Scholar
  95. Nassar N, Husein M (2006) Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions. Phys Status Solid A 203:1324–1328. CrossRefGoogle Scholar
  96. Ngenefeme JFT, Eko JN, Mbom DY, Tantoh DN, Rui MKW (2013) A one pot green synthesis and characterisation of iron oxide-pectin hybrid Nanocomposite. Open J Comp Mater 3:30–37. Google Scholar
  97. Okoli C, Boutonnet M, Mariey L, Järås S, Rajarao G (2011) Application of magnetic iron oxide nanoparticles prepared from microemulsions for protein purification. J Chem Technol Biotechnol 86:1386–1393. CrossRefGoogle Scholar
  98. Okoli C, Sanchez-Dominguez M, Boutonnet M, Järås S, Civera C, Solans C, Kuttuva GR (2012) Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir 28:8479–8485. PubMedCrossRefGoogle Scholar
  99. Oluwafemi OS, Mohan S, Olubomehin O, Osibote OA, Songca SP (2016) Size tunable synthesis of HDA and TOPO capped ZnSe nanoparticles via a facile aqueous/thermolysis hybrid solution route. J Mater Sci Mater Electron 27:3880–3887. CrossRefGoogle Scholar
  100. Pal A (2004) Preparation of ultrafine colloidal gold particles using a bioactive molecule. J Nanopart Res 6:27–34CrossRefGoogle Scholar
  101. Palui G, Aldeek F, Wang W, Mattoussi H (2014) Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem Soc Rev 4:193–227. Google Scholar
  102. Park J, Ahn M, Kim Y, Kim S, Moon Y, Ahn S, Yoon J (2012) In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e 6 against staphylococcus Aureus Xen29. Biol Pharm Bull 35:509–514PubMedCrossRefGoogle Scholar
  103. Penon O, Patiço T, Barrios L, Noguøs C, Amabilino DB (2015) A new porphyrin for the preparation of functionalized water-soluble gold nanoparticles with low intrinsic toxicity. Chem Open 4:127–136. Google Scholar
  104. Pienpinijtham P, Han XX, Ekgasit S, Ozaki Y (2011) Highly sensitive and selective determination of iodide and thiocyanate concentrations using surface-enhanced Raman scattering of starch-reduced gold nanoparticles. Anal Chem 83:3655–3662PubMedCrossRefGoogle Scholar
  105. Piette J, Volanti C, Vantieghem A, Matroule JY, Habraken Y, Agostinis P (2003) Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers. Biochem Pharmacol 66:1651–1659. PubMedCrossRefGoogle Scholar
  106. Postiglione I, Chiaviello A, Palumbo G (2011) Enhancing photodynamyc therapy efficacy by combination therapy: dated, current and oncoming strategies. Cancers 3:2597–2629. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M (1999) Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci 215:90–192. CrossRefGoogle Scholar
  108. Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy- an overview. J Clin Diagn Res 9:1–6. CrossRefGoogle Scholar
  109. Rodríguez-López A, Paredes-Arroyo A, Mojica-Gomez J, Estrada-Arteaga C, Cruz-River JJ, Elías Alfaro CG, Antaño-López R (2012) Electrochemical synthesis of magnetite and maghemite nanoparticles using dissymmetric potential pulses. J Nanopart Res 14:1–9. CrossRefGoogle Scholar
  110. Samaroo D, Vinodu M, Chen X, Drain CM (2007) Meso -tetra ( pentafluorophenyl ) porphyrin as an efficient platform for combinatorial synthesis and the selection of new photodynamic therapeutics using a cancer cell line. J Comb Chem 9:998–1011PubMedPubMedCentralCrossRefGoogle Scholar
  111. Saraswathy A, Nazeer SS, Nimi N, Arumugam S, Shenoy SJ, Jayasree RS (2014) Synthesis and characterization of dextran stabilized superparamagnetic iron oxide nanoparticles for in vivo MR imaging of liver fibrosis. Carbohydr Polym 101:760–768. PubMedCrossRefGoogle Scholar
  112. Sarkar T, Banerjee S, Hussain A (2015) Remarkable visible light-triggered cytotoxicity of mitochondria targeting mixed-ligand cobalt ( iii) complexes of curcumin and phenanthroline bases binding to human serum albumin. RSC Adv 5:16641–16653. CrossRefGoogle Scholar
  113. Saville SL, Qi B, Baker J, Stone R, Camley RE, Livesey KL, Ye L, Crawford TM, Mefford OT (2014) The formation of linear aggregates in magnetic hyperthermia: implications on specific absorption rate and magnetic anisotropy. J Colloid Interface Sci 424:41–51. CrossRefGoogle Scholar
  114. Schuitmaker JJ, Baas P, van Leengoed HL, van der Meulen FW, Star WM, van Zandwijk N (1996) Photodynamic therapy: a promising new modality for the treatment of cancer. J Photochem Photobiol B 34:3–12. PubMedCrossRefGoogle Scholar
  115. Severino D, Junqueira HC, Gabrielli DS, Gugliott M, Baptista MS (2003) Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochem Photobiol 77:459–468. PubMedCrossRefGoogle Scholar
  116. Shah BP, Pasquale N, De G, Tan T, Lee K, Biology C, States U, Heart D (2014) Core À Shell Nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano 9:9379–9387CrossRefGoogle Scholar
  117. Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J (2014) Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram Int 40:1519–1524. CrossRefGoogle Scholar
  118. Shervani Z, Yamamoto Y (2011) Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites. Carbohydr Res 346:651–658. PubMedCrossRefGoogle Scholar
  119. Sherwani MA, Tufail S, Khan AA, Owais M (2015) Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: potential for treatment of C. albicans infection in BALB/c mice. PLoS ONE 10: e0131684.
  120. Shete PB, Patil RM, Thorat ND, Prasad A, Ningthoujam RS, Ghosh SJ, Pawar SH (2014) Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl Surf Sci 288:149–157. CrossRefGoogle Scholar
  121. Shevtsov MA, Nikolaev BP, Yakovleva LY, Bystrova OA, Ischenko AM (2014) Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor ( SPION – EGF ) for targeting brain tumors. Int J Nanomedicine 9:273–287PubMedPubMedCentralCrossRefGoogle Scholar
  122. Silva AC, Oliveira TR, Mamani JB, Malheiros SMF, Malavolta L, Pavon LF, Sibov TT, Amaro E, Tannús A, Vidoto ELG, Martins MJ, Santos RS, Gamarra LF (2011) Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine 6:91–603. Google Scholar
  123. Silva AH, Lima E, Mansilla MV, Zysler RD, Troiani H, Pisciotti MLM, Locatelli C, Benech JC, Oddone N, Zoldan VC, Winter E, Pasa AA, Creczynski-Pasa TB (2016) Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation. Nanomed Nanotechnol Biol Med 12:909–919. CrossRefGoogle Scholar
  124. Song Y, Huang Z, Xu J, Ren D, Wang Y, Zheng X, Shen Y, Wang L, Gao H, Hou J, Pang Z, Qian J, Ge J (2014) Multimodal SPION-CREKA peptide based agents for molecular imaging of microthrombus in a rat myocardial ischemia-reperfusion model. Biomaterials 35:2961–2970. PubMedCrossRefGoogle Scholar
  125. Sperandio FF, Huang YY, Hamblin MR (2013) Antimicrobial photodynamic therapy to kill gram-negative bacteria. Recent Pat Antiinfect Drug Discov 8:1–23. CrossRefGoogle Scholar
  126. Sperling R, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans 368:1333–1383. CrossRefGoogle Scholar
  127. Starowicz M, Starowicz P, Żukrowski J, Przewoźnik J, Lemański A, Kapusta C, Bana J (2011) Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J Nanopart Res 13:7167–7176. PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004a) Monodisperse MFe 2 O 4 (M Fe, Co, Mn) Nanoparticles. J Am Chem Soc 126:273–279. PubMedCrossRefGoogle Scholar
  129. Sun YK, Ma M, Zhang Y, Gu N (2004b) Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surfaces A 245:15–19. CrossRefGoogle Scholar
  130. Tada DB, Rossi LM, Leite CAP, Itri R, Baptista MS (2010) Nanoparticle platform to modulate reaction mechanism of phenothiazine photosensitizers. J Nanosci Nanotechnol 10:1–9. CrossRefGoogle Scholar
  131. Tadić M, Kusigerski V, Marković D, Panjan M, Milošević I, Spasojević V (2012) Highly crystalline superparamagnetic iron oxide nanoparticles (SPION) in a silica matrix. J Alloys Comp 25:28–33. CrossRefGoogle Scholar
  132. Tagad CK, Rajdeo KS, Kulkarni A, More P, Aiyer RC, Sabharwal S (2014) Nanoparticles: chemo catalytic and room temperature operable vapor sensing application. RSC Adv 4:24014–24019. CrossRefGoogle Scholar
  133. Tajabadi M, Khosroshahi ME, Bonakdar S (2013) An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surfaces A 431:18–26. CrossRefGoogle Scholar
  134. Tang W, Xu H, Kopelman R, Philbert MA, (2005), Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem. Photobiol. 81, 242-249.
  135. Tang Y, Hu J, Elmenoufy AH, Yang X (2015) Highly efficient FRET system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3:Tb scintillating Nanoparticles. ACS Appl Mater Interfaces 7:12261–12269. PubMedCrossRefGoogle Scholar
  136. Tegos GP, Anbe M, Yang C, Demidova TN, Satti M, Mroz P, Janjua S, Gad F, Hamblin MR (2006) Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation. Antimicrobial Agents and Chemo 50:1402–1410. CrossRefGoogle Scholar
  137. Thapa D, Palkar VR, Kurup MB, Malik SK (2004) Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett 58:2692–2694. CrossRefGoogle Scholar
  138. Tian G, Ren W, Yan L, Jian S, Gu Z, Zhou L, Jin S, Yin W, Li S, Zhao Y (2013) Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation. Small 9:1928–1938. CrossRefGoogle Scholar
  139. Turkbey B, Albert PS, Kurdziel K, Choyke PL (2009) Imaging localized prostate cancer: current approaches and new developments. AJR Am J Roentgenol 192:1471–1480. PubMedPubMedCentralCrossRefGoogle Scholar
  140. Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Lunardi CN (2016) In vitro cytotoxicity and phototoxicity of surface-modi fi ed gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng C 65:199–204. CrossRefGoogle Scholar
  141. Vermaelen K, Brusselle G (2013) Exposing a deadly alliance: novel insights into the biological links between COPD and lung cancer. Pulmon Pharmacol Ther:544–554.
  142. Vijayakumar S, Ganesan S (2012) In vitro Cytotoxicity assay on gold nanoparticles with different stabilizing agents. J Nanomater 2012:1–9. CrossRefGoogle Scholar
  143. Vincent P, Renoir JM, Autret G, Marsaud V, Ménager C, Clément O, Lesieur S (2013) Systemic magnetic targeting of pure-antiestrogen-loaded superparamagnetic nanovesicles for effective therapy of hormone- dependent breast cancers. J Bioanal Biomed 5:28–35. Google Scholar
  144. Vu-Quang H, Muthiah M, Kim YK, Cho CS, Namgung R, Kim WJ, Rhee JH, Kang SH, Jun SY, Choi YJ, Jeong YY, Park IK (2012) Carboxylic mannan-coated iron oxide nanoparticles targeted to immune cells for lymph node-specific MRI in vivo. Carbohydr Polym 88:780–788. CrossRefGoogle Scholar
  145. Wagstaff AJ, Brown SD, Holden MR, Craig GE, Plumb J, Brown RE, Schreiter N, Chrzanowski W, Wheate NJ (2012) Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields. Inorg Chim Acta 393:328–333. CrossRefGoogle Scholar
  146. Wang Y, Zhanb L, Huang CZ (2010) One-pot preparation of dextran-capped gold nanoparticles at room temperature and colorimetric detection of dihydralazine sulfate in uric samples. Anal Methods 2:1982–1988. CrossRefGoogle Scholar
  147. Wang C, Tao H, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32:6145–6154.
  148. Wang S, Chen W, Liu A, Hong L, Deng H, Lin X (2012) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. Chem Phys Chem 13:1199–1204. PubMedCrossRefGoogle Scholar
  149. Wang D, Fei B, Halig LV, Qin X, Hu Z, Xu H, Wang YA, Chen Z, Kim S, Dong M, Shin DM, Chen Z (2014) Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano 8:6620–6632. PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wang C, Tang F, Wang Li L (2016) Synthesis and application of biocompatible gold core — poly- ( l -lysine ) shell nanoparticles. Colloids Surfaces A 506:425–430. CrossRefGoogle Scholar
  151. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834. PubMedCrossRefGoogle Scholar
  152. Wei C, Li J, Gao F, Guo S, Zhou Y, Zhao, D (2014) One-step synthesis of high-quality water-soluble CdSe quantum dots capped by N -Acetyl-L-cysteine via hydrothermal method and their characterization. J Spectosc Article ID 369145.
  153. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35. PubMedCrossRefGoogle Scholar
  154. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:97–415. Google Scholar
  155. Xu L, Xiang J, Peng R, Liu Z (2016) Recent advances in the development of nanomaterials for DC-based immunotherapy. Sci Bull 61:514–523. CrossRefGoogle Scholar
  156. Yan Y, Zheng M, Chen Z, Yu X, Yang DZ, Xu L (2010) Studies on preparation and photodynamic mechanism of chlorin P6-13,15-N-(cyclohexyl)cycloimide (Chlorin-H) and its antitumor effect for photodynamic therapy in vitro and in vivo. Bioorg Med Chem 18:6282–6291PubMedCrossRefGoogle Scholar
  157. Yan H, Pan X, Chua MH, Wang X, Song J, Ye Q, Zhou H, Xuan ATY, Liu Y, Xu J (2014) Self-assembled supramolecular nanoparticles mediated by host–guest interactions for photodynamic therapy. RSC Adv 4:0708. Google Scholar
  158. Yang G, Yang D, Yang P, Lv R, Li C, Zhong C, He F, Gai S, Lin J (2015) A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles. Chem Mater 27:7957–7968. CrossRefGoogle Scholar
  159. You J, Zhang P, Hu F, Du Y, Yuan H, Zhu J, Wang Z, Zhou J, Li C (2014) Near-infrared light sensitive liposomes for the enhanced photothermal tumor treatment by the combination with chemotherapy. Pharm Res 31:554–565. PubMedPubMedCentralCrossRefGoogle Scholar
  160. Yu H, Li Y, Li X, Fan L, Yang S (2014) Highly dispersible and charge-tunable magnetic Fe3O4 nanoparticles: facile fabrication and reversible binding to GO for efficient removal of dye pollutants. J Mater Chem A 2:5763–15767. Google Scholar
  161. Zamora-Mora V, Fernández-Gutiérre M, San Román J, Goya G, Hernández R, Mijangos C (2014) Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr Polym 10:691–698. CrossRefGoogle Scholar
  162. Zeng L, Xiang L, Ren W, Zheng J, Li T, Chen B, Zhang J, Mao C, Li A, Wu A (2013) Multifunctional photosensitizer-conjugated core-shell Fe3O 4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells. RSC Adv 3:13915–13925. CrossRefGoogle Scholar
  163. Zhang C, Xie X (2011) Controllable assembly of hydrophobic superparamagnetic iron oxide nanoparticle with mPEG-PLA copolymer and its effect on MR transverse relaxation rate. J Nanomater 2011:1–8. Google Scholar
  164. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561. PubMedCrossRefGoogle Scholar
  165. Zhang X, Servos MR, Liu J (2012) Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir 28:3896–3902PubMedCrossRefGoogle Scholar
  166. Zhang J, Hao G, Yao C, Hu S, Hu C, Zhang B (2016) Paramagnetic albumin decorated CuInS 2 /ZnS QDs for CD133 + glioma bimodal MR/fluorescence targeted imaging. J Mater Chem B 4:4110–4118. CrossRefGoogle Scholar
  167. Zhao X, Chen Z, Zhang D (2014) Simultaneous cancer near-infrared imaging and. RSC Adv 4:62153–62159. CrossRefGoogle Scholar
  168. Zhao L, Kim T, Kim H, Ahn J, Yeon S (2016) Enhanced cellular uptake and phototoxicity of Vertepor fi n-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers. Mater Sci Engin C 67:611–622. CrossRefGoogle Scholar
  169. Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14:21009. CrossRefGoogle Scholar
  170. Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B (2011) Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem Mater 21:4857–4862. CrossRefGoogle Scholar
  171. Zhou J, Fa H, Yin W, Zhang J, Hou C, Huo D (2014) Synthesis of superparamagnetic iron oxide nanoparticles coated with a DDNP-carboxyl derivative for in vitro magnetic resonance imaging of Alzheimer\ s diseas. Mater Sci Eng C 37:348–355. CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Olayemi J. Fakayode
    • 1
    • 2
  • Ncediwe Tsolekile
    • 1
    • 2
  • Sandile P. Songca
    • 3
  • Oluwatobi S. Oluwafemi
    • 1
    • 2
  1. 1.Department of Applied ChemistryUniversity of JohannesburgDoornfonteinSouth Africa
  2. 2.Centre for Nanomaterials Science ResearchUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Department of ChemistryUniversity of ZululandKwadlangezwaSouth Africa

Personalised recommendations