Biophysical Reviews

, Volume 10, Issue 2, pp 597–604 | Cite as

Structural insights on the dynamics of proteasome formation

  • Koichi Kato
  • Tadashi Satoh


Molecular organization in biological systems comprises elaborately programmed processes involving metastable complex formation of biomolecules. This is exemplified by the formation of the proteasome, which is one of the largest and most complicated biological supramolecular complexes. This biomolecular machinery comprises approximately 70 subunits, including structurally homologous, but functionally distinct, ones, thereby exerting versatile proteolytic functions. In eukaryotes, proteasome formation is non-autonomous and is assisted by assembly chaperones, which transiently associate with assembly intermediates, operating as molecular matchmakers and checkpoints for the correct assembly of proteasome subunits. Accumulated data also suggest that eukaryotic proteasome formation involves scrap-and-build mechanisms. However, unlike the eukaryotic proteasome subunits, the archaeal subunits show little structural divergence and spontaneously assemble into functional machinery. Nevertheless, the archaeal genomes encode homologs of eukaryotic proteasome assembly chaperones. Recent structural and functional studies of these proteins have advanced our understanding of the evolution of molecular mechanisms involved in proteasome biogenesis. This knowledge, in turn, provides a guiding principle in designing molecular machineries using protein engineering approaches and de novo synthesis of artificial molecular systems.


Assembly chaperone Proteasome Biomolecular machinery Transient interaction 



This work was supported in part by grants (JP25102001, JP25102008, and JP15H02491 to K.K.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, by the Okazaki ORION project.

Compliance with ethical standards

Conflict of interest

Koichi Kato declares that he has no conflict of interest. Tadashi Satoh declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Arisaka F, Yap ML, Kanamaru S, Rossmann MG (2016) Molecular assembly and structure of the bacteriophage T4 tail. Biophys Rev 8:385–396. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barrault MB, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier JB, Le Du MH, Guérois R, Ochsenbein F, Peyroche A (2012) Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci U S A 109:E1001–E1010. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Budenholzer L, Cheng CL, Li Y, Hochstrasser M (2017) Proteasome structure and assembly. J Mol Biol 429:3500–3524. CrossRefPubMedGoogle Scholar
  4. Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169:792–806. CrossRefPubMedGoogle Scholar
  6. Ehlinger A, Park S, Fahmy A, Lary JW, Cole JL, Finley D, Walters KJ (2013) Conformational dynamics of the Rpt6 ATPase in proteasome assembly and Rpn14 binding. Structure 21:753–765. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Finley D, Chen X, Walters KJ (2016) Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 41:77–93. CrossRefPubMedGoogle Scholar
  8. Funakoshi M, Tomko RJ Jr, Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137:887–899. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gerards WL, Enzlin J, Häner M, Hendriks IL, Aebi U, Bloemendal H, Boelens W (1997) The human α-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the β-type subunits HsDelta or HsBPROS26. J Biol Chem 272:10080–10086CrossRefPubMedGoogle Scholar
  10. Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN (2008) Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem 283:31813–31822. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209CrossRefPubMedGoogle Scholar
  12. Hirano Y, Hendil KB, Yashiroda H, Iemura SI, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437:1381–1385. CrossRefPubMedGoogle Scholar
  13. Hirano Y, Hayashi H, Iemura SI, Hendil KB, Niwa SI, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S (2006) Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 24:977–984. CrossRefPubMedGoogle Scholar
  14. Hirano Y, Kaneko T, Okamoto K, Bai M, Yashiroda H, Furuyama K, Kato K, Tanaka K, Murata S (2008) Dissecting β-ring assembly pathway of the mammalian 20S proteasome. EMBO J 27:2204–2213. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ishii K Noda M, Yagi H, Thammaporn R, Seetaha S, Satoh T, Kato K, Uchiyama S (2015) Disassembly of the self-assembled, double-ring structure of proteasome α7 homo-tetradecamer by α6. Sci Rep 5:18167. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kaneko T, Hamazaki J, Iemura SI, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (2009) Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137:914–925. CrossRefPubMedGoogle Scholar
  17. Kim S, Saeki Y, Fukunaga K, Suzuki A, Takagi K, Yamane T, Tanaka K, Mizushima T, Kato K (2010) Crystal structure of yeast Rpn14, a chaperone of the 19 S regulatory particle of the proteasome. J Biol Chem 285:15159–15166. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42:29–49. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kock M, Nunes MM, Hemann M, Kube S, Dohmen RJ, Herzog F, Ramos PC, Wendler P (2015) Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1–Pba2 chaperone. Nat Commun 6:6123. CrossRefPubMedGoogle Scholar
  20. Kozai T, Sekiguchi T, Satoh T, Yagi H, Kato K, Uchihashi T (2017) Two-step process for disassembly mechanism of proteasome α7 homo-tetradecamer by α6 revealed by high-speed atomic force microscopy. Sci Rep 7:15373. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kumoi K, Satoh T, Murata K, Hiromoto T, Mizushima T, Kamiya Y, Noda M, Uchiyama S, Yagi H, Kato K (2013) An archaeal homolog of proteasome assembly factor functions as a proteasome activator. PLoS One 8:e60294. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kurimoto E, Satoh T, Ito Y, Ishihara E, Okamoto K, Yagi‐Utsumi M, Tanaka K, Kato K (2017) Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation. Protein Sci 26:1080–1085. CrossRefPubMedGoogle Scholar
  23. Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15:237–244. CrossRefPubMedGoogle Scholar
  24. Kusmierczyk AR, Kunjappu MJ, Kim RY, Hochstrasser M (2011) A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol 18:622–629CrossRefPubMedPubMedCentralGoogle Scholar
  25. Le Tallec B, Barrault MB, Courbeyrette R, Guérois R, Marsolier-Kergoat MC, Peyroche A (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27:660–674. CrossRefPubMedGoogle Scholar
  26. Le Tallec B, Barrault MB, Guérois R, Carré T, Peyroche A (2009) Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell 33:389–399. CrossRefPubMedGoogle Scholar
  27. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268:533–539CrossRefPubMedGoogle Scholar
  28. Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10:104–115CrossRefPubMedGoogle Scholar
  29. Nakamura Y, Nakano K, Umehara T, Kimura M, Hayashizaki Y, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S (2007) Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Structure 15:179–189CrossRefPubMedGoogle Scholar
  30. Peña C, Hurt E, Panse VG (2017) Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol 24:689–699. CrossRefPubMedGoogle Scholar
  31. Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459:861–865. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Saeki Y, Toh-e A, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137:900–913. CrossRefPubMedGoogle Scholar
  33. Sá-Moura B, Simões AM, Fraga J, Fernandes H, Abreu IA, Botelho HM, Gomes CM, Marques AJ, Dohmen RJ, Ramos PC, Macedo-Ribeiro S (2013) Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor Ump1. Comput Struct Biotechnol J 7:e201304006. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Satoh T, Saeki Y, Hiromoto T, Wang YH, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K (2014) Structural basis for proteasome formation controlled by an assembly chaperone Nas2. Structure 22:731–743. CrossRefPubMedGoogle Scholar
  35. Schur FK, Obr M, Hagen WJ, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich HG, Briggs JA (2016) An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353:506–508. CrossRefPubMedGoogle Scholar
  36. Shajani Z, Sykes MT, Williamson JR (2011) Assembly of bacterial ribosomes. Annu Rev Biochem 80:501–526. CrossRefPubMedGoogle Scholar
  37. Sikdar A, Satoh T, Kawasaki M, Kato K (2014) Crystal structure of archaeal homolog of proteasome-assembly chaperone PbaA. Biochem Biophys Res Commun 453:493–497. CrossRefPubMedGoogle Scholar
  38. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s α ring opens the gate for substrate entry. Mol Cell 27:731–744CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622. CrossRefPubMedGoogle Scholar
  40. Stadtmueller BM, Kish-Trier E, Ferrell K, Petersen CN, Robinson H, Myszka DG, Eckert DM, Formosa T, Hill CP (2012) Structure of a proteasome Pba1–Pba2 complex: implications for proteasome assembly, activation, and biological function. J Biol Chem 287:37371–37382. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sugiyama M, Hamada K, Kato K, Kurimoto E, Okamoto K, Morimoto Y, Ikeda S, Naito S, Furusaka M, Itoh K, Mori K, Fukunaga T (2009) SANS simulation of aggregated protein in aqueous solution. Nucl Instr Meth Phys Res A 600:272–274CrossRefGoogle Scholar
  42. Sugiyama M, Kurimoto E, Yagi H, Mori K, Fukunaga T, Hirai M, Zaccai G, Kato K (2011) Kinetic asymmetry of subunit exchange of homooligomeric protein as revealed by deuteration-assisted small-angle neutron scattering. Biophys J 101:2037–2042. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sugiyama M, Yagi H, Yamaguchi T, Kumoi K, Hirai M, Oba Y, Sato N, Porcar L, Martel A, Kato K (2014) Conformational characterization of a protein complex involving intrinsically disordered protein by small-angle neutron scattering using the inverse contrast matching method: a case study of interaction between α-synuclein and PbaB tetramer as a model chaperone. J Appl Crystallogr 47:430–435CrossRefGoogle Scholar
  44. Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012) Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p. J Biol Chem 287:12172–12182. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Takagi K, Saeki Y, Yashiroda H, Yagi H, Kaiho A, Murata S, Yamane T, Tanaka K, Mizushima T, Kato K (2014) Pba3–Pba4 heterodimer acts as a molecular matchmaker in proteasome α-ring formation. Biochem Biophys Res Commun 450:1110–1114. CrossRefPubMedGoogle Scholar
  46. Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12–36CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tomko RJ Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 38:393–403. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Uekusa Y, Okawa K, Yagi-Utsumi M, Serve O, Nakagawa Y, Mizushima T, Yagi H, Saeki Y, Tanaka K, Kato K (2014) Backbone 1H, 13C, and 15N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone. Biomol NMR Assign 8:383–386. CrossRefPubMedGoogle Scholar
  49. Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002) The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10:609–618CrossRefPubMedGoogle Scholar
  50. Vinothkumar KR (2015) Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 33:103–114. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wani PS, Rowland MA, Ondracek A, Deeds EJ, Roelofs J (2015) Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun 6:6384. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yagi-Utsumi M, Sikdar A, Kozai T, Inoue R, Sugiyama M, Uchihashi T, Yagi H, Satoh T, Kato K (2017) Conversion of functionally undefined homopentameric protein PbaA into a proteasome activator by mutational modification of its C-terminal segment conformation. Protein Eng Des Sel.
  53. Yao Y, Toth CR, Huang L, Wong ML, Dias P, Burlingame AL, Coffino P, Wang CC (1999) α5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochem J 344(2):349–358PubMedPubMedCentralGoogle Scholar
  54. Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa SI, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15:228–236. CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Okazaki Institute for Integrative Bioscience and Institute for Molecular ScienceNational Institutes of Natural SciencesOkazakiJapan
  2. 2.Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan

Personalised recommendations