Skip to main content
Log in

Lipid environment of membrane proteins in cryo-EM based structural analysis

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Cryoelectron microscopy (cryo-EM) in association with a single particle analysis method (SPA) is now a promising tool to determine the structures of proteins and their macromolecular complexes. The development of direct electron detection cameras and image processing technologies has allowed the structures of many important proteins to be solved at near-atomic resolution or, in some cases, at atomic resolution, by overcoming difficulties in crystallization or low yield of protein production. In the case of membrane-integrated proteins, the proteins were traditionally solubilized and stabilized with various kind of detergents. However, the density of detergent micelles diminished the contrast of membrane proteins in cryo-EM studies and made it difficult to obtain high-resolution structures. To improve the resolution of membrane protein structures in cryo-EM studies, major improvements have been made both in sample preparation techniques and in hardware and software developments. The focus of our review is on improvements which have been made in the various techniques for sample preparation for cryo-EM studies, with a specific interest placed on techniques for mimicking the lipid environment of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  CAS  PubMed  Google Scholar 

  • Alpes H, Apell H-J, Knoll G, Plattner H, Riek R (1988) Reconstitution of Na+/K+-ATPase into phosphatidylcholine vesicles by dialysis of nonionic alkyl maltoside detergents. Biochim Biophys Acta 946:379–388

    Article  CAS  PubMed  Google Scholar 

  • Althoff T, Mills DJ, Popot JL, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I 1 III 2 IV 1. EMBO J 30:4652–4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arachea BT, Sun Z, Potente N, Malik R, Isailovic D, Viola RE (2012) Detergent selection for enhanced extraction of membrane proteins. Protein Expr Purif 86:12–20

    Article  CAS  PubMed  Google Scholar 

  • Bai X-c, Yan C, Yang G, Lu P, Ma D, Sun L, Zhou R, Scheres SH, Shi Y (2015) An atomic structure of human γ-secretase. Nature 525:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker MR, Fan G, Serysheva II (2017) Structure of IP3R channel: high-resolution insights from cryo-EM. Curr Opin Struct Biol 46:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangham AD, Horne R (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  CAS  PubMed  Google Scholar 

  • Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856

    Article  CAS  Google Scholar 

  • Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12:2476–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldog T, Grimme S, Li M, Sligar SG, Hazelbauer GL (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci USA 103:11509–11514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordag N, Keller S (2010) α-helical transmembrane peptides: a “divide and conquer” approach to membrane proteins. Chem Phys Lipids 163:1–26

    Article  CAS  PubMed  Google Scholar 

  • Bremer A, Henn C, Engel A, Baumeister W, Aebi U (1992) Has negative staining still a place in biomacromolecular electron microscopy? Ultramicroscopy 46:85–111

    Article  CAS  PubMed  Google Scholar 

  • Brouillette CG, Jones JL, Ng TC, Kercret H, Chung BH, Segrest JP (1984) Structural studies of apolipoprotein AI/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. Biochemistry 23:359–367

    Article  CAS  PubMed  Google Scholar 

  • Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286:38168–38176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denisov IG, Sligar SG (2016) Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 23:481–487

    Article  CAS  PubMed  Google Scholar 

  • Denisov IG, Sligar SG (2017) Nanodiscs in membrane biochemistry and biophysics. Chem Rev 117:4669–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dörr JM, Koorengevel MC, Schäfer M, Prokofyev AV, Scheidelaar S, van der Cruijsen EA, Dafforn TR, Baldus M, Killian JA (2014) Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc Natl Acad Sci USA 111:18607–18612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dörr JM, Scheidelaar S, Koorengevel MC, Dominguez JJ, Schäfer M, van Walree CA, Killian JA (2016) The styrene–maleic acid copolymer: a versatile tool in membrane research. Eur Biophys J 45:3–21

    Article  PubMed  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  PubMed  Google Scholar 

  • Dürr UH, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112:6054–6074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Efremov RG, Leitner A, Aebersold R, Raunser S (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick AW, Llabrés S, Neuberger A, Blaza JN, Bai X-C, Okada U, Murakami S, van Veen HW, Zachariae U, Scheres SH (2017) Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2:17070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frauenfeld J, Gumbart J, Van Der Sluis EO, Funes S, Gartmann M, Beatrix B, Mielke T, Berninghausen O, Becker T, Schulten K (2011) Cryo-EM structure of the ribosome–SecYE complex in the membrane environment. Nat Struct Mol Biol 18:614–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frauenfeld J, Löving R, Armache JP, Sonnen AF, Guettou F, Moberg P, Zhu L, Jegerschöld C, Flayhan A, Briggs JA, Garoff H, Löw C, Cheng Y, Nordlund P (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13:345–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatsogiannis C, Merino F, Prumbaum D, Roderer D, Leidreiter F, Meusch D, Raunser S (2016) Membrane insertion of a Tc toxin in near-atomic detail. Nat Struct Mol Biol 23:884–890

    Article  CAS  PubMed  Google Scholar 

  • Grinkova YV, Denisov IG, Sligar SG (2010) Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng Des Sel 23:843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, Jiang Y (2016) Structure of voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:196

  • Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagn F, Wagner G (2015) Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. J Biomol NMR 61:249–260

    Article  CAS  PubMed  Google Scholar 

  • Hauer F, Gerle C, Fischer N, Oshima A, Shinzawa-Itoh K, Shimada S, Yokoyama K, Fujiyoshi Y, Stark H (2015) GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 23:1769–1775

    Article  CAS  PubMed  Google Scholar 

  • Hinkle PC, Kim JJ, Racker E (1972) Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem 247:1338–1339

    CAS  PubMed  Google Scholar 

  • Jamshad M, Grimard V, Idini I, Knowles TJ, Dowle MR, Schofield N, Sridhar P, Lin Y, Finka R, Wheatley M (2015) Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Res 8:774–789

    Article  CAS  Google Scholar 

  • Jensen KH, Brandt SS, Shigematsu H, Sigworth FJ (2016) Statistical modeling and removal of lipid membrane projections for cryo-EM structure determination of reconstituted membrane proteins. J Struct Biol 194:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin P, Bulkley D, Guo Y, Zhang W, Guo Z, Huynh W, Wu S, Meltzer S, Cheng T, Jan LY (2017) Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547:118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ZL, Chen J (2017) Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Kagawa Y, Racker E (1971) Partial resolution of the enzymes catalyzing oxidative phosphorylation XXV. Reconstitution of vesicles catalyzing 32Pi—adenosine triphosphate exchange. J Biol Chem 246:5477–5487

  • Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    Article  CAS  PubMed  Google Scholar 

  • Kedrov A, Wickles S, Crevenna AH, van der Sluis EO, Buschauer R, Berninghausen O, Lamb DC, Beckmann R (2016) Structural dynamics of the YidC: ribosome complex during membrane protein biogenesis. Cell Rep 17:2943–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoshouei M, Radjainia M, Baumeister W, Danev R (2017) Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nat Commun 8:16099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Wu S, Tomasiak TM, Mergel C, Winter MB, Stiller SB, Robles-Colmanares Y, Stroud RM, Tampé R, Craik CS (2015) Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 517:396–400

    Article  CAS  PubMed  Google Scholar 

  • Kimanius D, Forsberg BO, Scheres SH, Lindahl E (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. elife 5:e18722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knowles TJ, Finka R, Smith C, Lin Y-P, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131:7484–7485

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Kudryashev M, Castaño-Díez D, Deluz C, Hassaine G, Grasso L, Graf-Meyer A, Vogel H, Stahlberg H (2016) The structure of the mouse serotonin 5-HT3 receptor in lipid vesicles. Structure 24:165–170

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Knowles TJ, Postis VL, Jamshad M, Parslow RA, Lin Y-p, Goldman A, Sridhar P, Overduin M, Muench SP (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11:1149–1162

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kijac AZ, Sligar SG, Rienstra CM (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys J 91:3819–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zhang WK, Benvin NM, Zhou X, Su D, Li H, Wang S, Michailidis IE, Tong L, Li X (2017) Structural basis of Ca2+/pH dual regulation of the endolysosomal TRPML1 channel. Nat Struct Mol Biol 24:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y-L, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SG, Christopoulos G, Coudrat T (2017) Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature 546:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Zhang Z, Csanády L, Gadsby DC, Chen J (2017) Molecular structure of the human CFTR ion channel. Cell 169:85–95

    Article  CAS  PubMed  Google Scholar 

  • Long AR, O’Brien CC, Malhotra K, Schwall CT, Albert AD, Watts A, Alder NN (2013) A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol 13:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P, Bai X-c, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres SH (2014) Three-dimensional structure of human γ-secretase. Nature 512:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazhab-Jafari MT, Rohou A, Schmidt C, Bueler SA, Benlekbir S, Robinson CV, Rubinstein JL (2016) Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature 539:118–122

    Article  CAS  PubMed  Google Scholar 

  • Mazhab-Jafari MT, Rubinstein JL (2016) Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. Sci Adv 2:e1600725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McMullan G, Faruqi A, Clare D, Henderson R (2014) Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JL (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milenkovic D, Blaza JN, Larsson N-G, Hirst J (2017) The enigma of the respiratory chain Supercomplex. Cell Metab 25:765–776

    Article  CAS  PubMed  Google Scholar 

  • Mio K, Mio M, Arisaka F, Sato M, Sato C (2010) The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog Biophys Mol Biol 103:111–121

    Article  CAS  PubMed  Google Scholar 

  • Mio K, Ogura T, Kiyonaka S, Hiroaki Y, Tanimura Y, Fujiyoshi Y, Mori Y, Sato C (2007) The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 367:373–383

    Article  CAS  PubMed  Google Scholar 

  • Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, Stewart PDS (2014) Membrane protein structure determination—the next generation. Biochim Biophys Acta 1838:78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray DH, Tamm LK, Kiessling V (2009) Supported double membranes. J Struct Biol 168:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C (2010) Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169:438–449

    Article  CAS  PubMed  Google Scholar 

  • Oldham ML, Hite RK, Steffen AM, Damko E, Li Z, Walz T, Chen J (2016) A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opella SJ, Marassi FM (2017) Applications of NMR to membrane proteins. Arch Biochem Biophys 628:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orwick MC, Judge PJ, Procek J, Lindholm L, Graziadei A, Engel A, Gröbner G, Watts A (2012) Detergent-free formation and physicochemical characterization of nanosized lipid–polymer complexes: Lipodisq. Angew Chem Int Ed Engl 51:4653–4657

    Article  CAS  PubMed  Google Scholar 

  • Oshima A, Tani K, Fujiyoshi Y (2016) Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat Commun 7:13681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  • Paulsen CE, Armache J-P, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520:511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  PubMed  Google Scholar 

  • Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X (2017) Structure of the human lipid exporter ABCA1. Cell 7:1228–1239

    Article  CAS  Google Scholar 

  • Richter R, Mukhopadhyay A, Brisson A (2003) Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys J 85:3035–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigaud J-L, Lévy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86

    Article  CAS  PubMed  Google Scholar 

  • Ritchie T, Grinkova Y, Bayburt T, Denisov I, Zolnerciks J, Atkins W, Sligar S (2009) Chapter eleven-reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosevear P, VanAken T, Baxter J, Ferguson-Miller S (1980) Alkyl glycoside detergents: a simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochemistry 19:4108–4115

    Article  CAS  PubMed  Google Scholar 

  • Saliba A-E, Vonkova I, Gavin A-C (2015) The systematic analysis of protein-lipid interactions comes of age. Nat Rev Mol Cell Biol 16:753

    Article  CAS  PubMed  Google Scholar 

  • Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Krey I, Rubinstein JL (2011) Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles. Micron 42:107–116

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Wilkes M, Mills DJ, Kühlbrandt W, Meier T (2017) Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. EMBO Rep 18:526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117

    Article  CAS  PubMed  Google Scholar 

  • Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE, Cao E (2016) The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167:763–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N (2017) Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355:eaal4326

    Article  PubMed  CAS  Google Scholar 

  • Shih AY, Denisov IG, Phillips JC, Sligar SG, Schulten K (2005) Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys J 88:548–556

    Article  CAS  PubMed  Google Scholar 

  • Taylor KA, Glaeser RM (1976) Electron microscopy of frozen hydrated biological specimens. J Ultrastruct Res 55:448–456

    Article  CAS  PubMed  Google Scholar 

  • Taylor NM, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP (2017) Structure of the human multidrug transporter ABCG2. Nature 546:504–509

    CAS  PubMed  Google Scholar 

  • Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26

    Article  CAS  PubMed  Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Tonge S, Tighe B (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122

    Article  CAS  PubMed  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanAken T, Foxall-VanAken S, Castleman S, Ferguson-Miller S (1986) Alkyl glycoside detergents: synthesis and applications to the study of membrane proteins. Methods Enzymol 125:27–35

    Article  CAS  PubMed  Google Scholar 

  • Wallin E, Heijne GV (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Sigworth FJ (2009) Cryo-EM structure of the BK potassium channel in a lipid membrane. Nature 461:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Mu Z, Li Y, Bi Y, Wang Y (2015) Smaller nanodiscs are suitable for studying protein lipid interactions by solution NMR. Protein J 34:205–211

    Article  CAS  PubMed  Google Scholar 

  • Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974

    Article  CAS  PubMed  Google Scholar 

  • Whicher JR, MacKinnon R (2016) Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353:664–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkes M, Madej MG, Kreuter L, Rhinow D, Heinz V, De Sanctis S, Ruppel S, Richter RM, Joos F, Grieben M (2017) Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nature 201:123–130

    Google Scholar 

  • Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N (2016) Structure of the voltage-gated calcium channel Cav1. 1 at 3.6 Å resolution. Nature 537:191–196

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Gui M, Wang D, Xiang Y (2016) The bacteriophage phi29 tail possesses a pore-forming loop for cell membrane penetration. Nature 534:544–544

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Zhou R, Shi Y (2017) Cryo-EM structures of human γ-secretase. Curr Opin Struct Biol 46:55–64

    Article  CAS  PubMed  Google Scholar 

  • Zalk R, Marks AR (2017) Ca2+ release channels join the ‘resolution revolution. Trends Biochem Sci 42:543–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A (2016) Reconstitution of the Cytb5–CytP450 complex in nanodiscs for structural studies using NMR spectroscopy. Angew Chem Int Ed Engl 55:4497–4499

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sun B, Feng D, Hu H, Chu M, Qu Q, Tarrasch JT, Li S, Kobilka TS, Kobilka BK (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Chen J (2016) Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167:1586–1597 e1589

    Article  CAS  PubMed  Google Scholar 

  • Zhou H-X, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Gouaux E (2017) Structure and symmetry inform gating principles of ionotropic glutamate receptors. Neuropharmacology 112:11–15

    Article  CAS  PubMed  Google Scholar 

  • Zubcevic L, Herzik Jr MA, Chung BC, Liu Z, Lander GC, Lee S-Y (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuhiro Mio or Chikara Sato.

Ethics declarations

Conflict of interest

Kazuhiro Mio declares that he has no conflicts of interest. Chikara Sato declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Biomolecules to Bio-nanomachines—Fumio Arisaka 70th Birthday’ edited by Damien Hall, Junichi Takagi and Haruki Nakamura

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mio, K., Sato, C. Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophys Rev 10, 307–316 (2018). https://doi.org/10.1007/s12551-017-0371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0371-6

Keywords

Navigation