Advertisement

Biophysical Reviews

, Volume 10, Issue 2, pp 307–316 | Cite as

Lipid environment of membrane proteins in cryo-EM based structural analysis

  • Kazuhiro Mio
  • Chikara Sato
Review

Abstract

Cryoelectron microscopy (cryo-EM) in association with a single particle analysis method (SPA) is now a promising tool to determine the structures of proteins and their macromolecular complexes. The development of direct electron detection cameras and image processing technologies has allowed the structures of many important proteins to be solved at near-atomic resolution or, in some cases, at atomic resolution, by overcoming difficulties in crystallization or low yield of protein production. In the case of membrane-integrated proteins, the proteins were traditionally solubilized and stabilized with various kind of detergents. However, the density of detergent micelles diminished the contrast of membrane proteins in cryo-EM studies and made it difficult to obtain high-resolution structures. To improve the resolution of membrane protein structures in cryo-EM studies, major improvements have been made both in sample preparation techniques and in hardware and software developments. The focus of our review is on improvements which have been made in the various techniques for sample preparation for cryo-EM studies, with a specific interest placed on techniques for mimicking the lipid environment of membrane proteins.

Keywords

Cryoelectron microscopy Membrane proteins Single particle analysis Lipid environment 

Notes

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).

Compliance with ethical standards

Conflict of interest

Kazuhiro Mio declares that he has no conflicts of interest. Chikara Sato declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36PubMedCrossRefGoogle Scholar
  2. Alpes H, Apell H-J, Knoll G, Plattner H, Riek R (1988) Reconstitution of Na+/K+-ATPase into phosphatidylcholine vesicles by dialysis of nonionic alkyl maltoside detergents. Biochim Biophys Acta 946:379–388PubMedCrossRefGoogle Scholar
  3. Althoff T, Mills DJ, Popot JL, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I 1 III 2 IV 1. EMBO J 30:4652–4664PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arachea BT, Sun Z, Potente N, Malik R, Isailovic D, Viola RE (2012) Detergent selection for enhanced extraction of membrane proteins. Protein Expr Purif 86:12–20PubMedCrossRefGoogle Scholar
  5. Bai X-c, Yan C, Yang G, Lu P, Ma D, Sun L, Zhou R, Scheres SH, Shi Y (2015) An atomic structure of human γ-secretase. Nature 525:212PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baker MR, Fan G, Serysheva II (2017) Structure of IP3R channel: high-resolution insights from cryo-EM. Curr Opin Struct Biol 46:38–47PubMedCrossRefGoogle Scholar
  7. Bangham AD, Horne R (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668PubMedCrossRefGoogle Scholar
  8. Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–1151PubMedCrossRefGoogle Scholar
  9. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856CrossRefGoogle Scholar
  10. Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12:2476–2481PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boldog T, Grimme S, Li M, Sligar SG, Hazelbauer GL (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci USA 103:11509–11514PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bordag N, Keller S (2010) α-helical transmembrane peptides: a “divide and conquer” approach to membrane proteins. Chem Phys Lipids 163:1–26PubMedCrossRefGoogle Scholar
  13. Bremer A, Henn C, Engel A, Baumeister W, Aebi U (1992) Has negative staining still a place in biomacromolecular electron microscopy? Ultramicroscopy 46:85–111PubMedCrossRefGoogle Scholar
  14. Brouillette CG, Jones JL, Ng TC, Kercret H, Chung BH, Segrest JP (1984) Structural studies of apolipoprotein AI/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. Biochemistry 23:359–367PubMedCrossRefGoogle Scholar
  15. Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286:38168–38176PubMedPubMedCentralCrossRefGoogle Scholar
  16. Denisov IG, Sligar SG (2016) Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 23:481–487PubMedCrossRefGoogle Scholar
  17. Denisov IG, Sligar SG (2017) Nanodiscs in membrane biochemistry and biophysics. Chem Rev 117:4669–4713PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dörr JM, Koorengevel MC, Schäfer M, Prokofyev AV, Scheidelaar S, van der Cruijsen EA, Dafforn TR, Baldus M, Killian JA (2014) Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc Natl Acad Sci USA 111:18607–18612PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dörr JM, Scheidelaar S, Koorengevel MC, Dominguez JJ, Schäfer M, van Walree CA, Killian JA (2016) The styrene–maleic acid copolymer: a versatile tool in membrane research. Eur Biophys J 45:3–21PubMedCrossRefGoogle Scholar
  20. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964PubMedCrossRefGoogle Scholar
  21. Dürr UH, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112:6054–6074PubMedPubMedCentralCrossRefGoogle Scholar
  22. Efremov RG, Leitner A, Aebersold R, Raunser S (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39PubMedCrossRefGoogle Scholar
  23. Fitzpatrick AW, Llabrés S, Neuberger A, Blaza JN, Bai X-C, Okada U, Murakami S, van Veen HW, Zachariae U, Scheres SH (2017) Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2:17070PubMedPubMedCentralCrossRefGoogle Scholar
  24. Frauenfeld J, Gumbart J, Van Der Sluis EO, Funes S, Gartmann M, Beatrix B, Mielke T, Berninghausen O, Becker T, Schulten K (2011) Cryo-EM structure of the ribosome–SecYE complex in the membrane environment. Nat Struct Mol Biol 18:614–621PubMedPubMedCentralCrossRefGoogle Scholar
  25. Frauenfeld J, Löving R, Armache JP, Sonnen AF, Guettou F, Moberg P, Zhu L, Jegerschöld C, Flayhan A, Briggs JA, Garoff H, Löw C, Cheng Y, Nordlund P (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13:345–351PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gatsogiannis C, Merino F, Prumbaum D, Roderer D, Leidreiter F, Meusch D, Raunser S (2016) Membrane insertion of a Tc toxin in near-atomic detail. Nat Struct Mol Biol 23:884–890PubMedCrossRefGoogle Scholar
  28. Grinkova YV, Denisov IG, Sligar SG (2010) Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng Des Sel 23:843–848PubMedPubMedCentralCrossRefGoogle Scholar
  29. Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, Jiang Y (2016) Structure of voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:196Google Scholar
  30. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hagn F, Wagner G (2015) Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. J Biomol NMR 61:249–260PubMedCrossRefGoogle Scholar
  32. Hauer F, Gerle C, Fischer N, Oshima A, Shinzawa-Itoh K, Shimada S, Yokoyama K, Fujiyoshi Y, Stark H (2015) GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 23:1769–1775PubMedCrossRefGoogle Scholar
  33. Hinkle PC, Kim JJ, Racker E (1972) Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem 247:1338–1339PubMedGoogle Scholar
  34. Jamshad M, Grimard V, Idini I, Knowles TJ, Dowle MR, Schofield N, Sridhar P, Lin Y, Finka R, Wheatley M (2015) Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Res 8:774–789CrossRefGoogle Scholar
  35. Jensen KH, Brandt SS, Shigematsu H, Sigworth FJ (2016) Statistical modeling and removal of lipid membrane projections for cryo-EM structure determination of reconstituted membrane proteins. J Struct Biol 194:49–60PubMedPubMedCentralCrossRefGoogle Scholar
  36. Jin P, Bulkley D, Guo Y, Zhang W, Guo Z, Huynh W, Wu S, Meltzer S, Cheng T, Jan LY (2017) Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547:118–122PubMedPubMedCentralCrossRefGoogle Scholar
  37. Johnson ZL, Chen J (2017) Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168:1075–1085PubMedCrossRefGoogle Scholar
  38. Kagawa Y, Racker E (1971) Partial resolution of the enzymes catalyzing oxidative phosphorylation XXV. Reconstitution of vesicles catalyzing 32Pi—adenosine triphosphate exchange. J Biol Chem 246:5477–5487Google Scholar
  39. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681PubMedCrossRefGoogle Scholar
  40. Kedrov A, Wickles S, Crevenna AH, van der Sluis EO, Buschauer R, Berninghausen O, Lamb DC, Beckmann R (2016) Structural dynamics of the YidC: ribosome complex during membrane protein biogenesis. Cell Rep 17:2943–2954PubMedPubMedCentralCrossRefGoogle Scholar
  41. Khoshouei M, Radjainia M, Baumeister W, Danev R (2017) Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nat Commun 8:16099PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kim J, Wu S, Tomasiak TM, Mergel C, Winter MB, Stiller SB, Robles-Colmanares Y, Stroud RM, Tampé R, Craik CS (2015) Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 517:396–400PubMedCrossRefGoogle Scholar
  43. Kimanius D, Forsberg BO, Scheres SH, Lindahl E (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. elife 5:e18722PubMedPubMedCentralCrossRefGoogle Scholar
  44. Knowles TJ, Finka R, Smith C, Lin Y-P, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131:7484–7485PubMedCrossRefGoogle Scholar
  45. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  46. Kudryashev M, Castaño-Díez D, Deluz C, Hassaine G, Grasso L, Graf-Meyer A, Vogel H, Stahlberg H (2016) The structure of the mouse serotonin 5-HT3 receptor in lipid vesicles. Structure 24:165–170PubMedCrossRefGoogle Scholar
  47. Lee SC, Knowles TJ, Postis VL, Jamshad M, Parslow RA, Lin Y-p, Goldman A, Sridhar P, Overduin M, Muench SP (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11:1149–1162PubMedCrossRefGoogle Scholar
  48. Li Y, Kijac AZ, Sligar SG, Rienstra CM (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys J 91:3819–3828PubMedPubMedCentralCrossRefGoogle Scholar
  49. Li M, Zhang WK, Benvin NM, Zhou X, Su D, Li H, Wang S, Michailidis IE, Tong L, Li X (2017) Structural basis of Ca2+/pH dual regulation of the endolysosomal TRPML1 channel. Nat Struct Mol Biol 24:205PubMedPubMedCentralCrossRefGoogle Scholar
  50. Liang Y-L, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SG, Christopoulos G, Coudrat T (2017) Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature 546:118–123PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107PubMedPubMedCentralCrossRefGoogle Scholar
  52. Liu F, Zhang Z, Csanády L, Gadsby DC, Chen J (2017) Molecular structure of the human CFTR ion channel. Cell 169:85–95PubMedCrossRefGoogle Scholar
  53. Long AR, O’Brien CC, Malhotra K, Schwall CT, Albert AD, Watts A, Alder NN (2013) A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol 13:41PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lu P, Bai X-c, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres SH (2014) Three-dimensional structure of human γ-secretase. Nature 512:166PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mazhab-Jafari MT, Rohou A, Schmidt C, Bueler SA, Benlekbir S, Robinson CV, Rubinstein JL (2016) Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature 539:118–122PubMedCrossRefGoogle Scholar
  56. Mazhab-Jafari MT, Rubinstein JL (2016) Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. Sci Adv 2:e1600725PubMedPubMedCentralCrossRefGoogle Scholar
  57. McMullan G, Faruqi A, Clare D, Henderson R (2014) Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–163PubMedPubMedCentralCrossRefGoogle Scholar
  58. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JL (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–1707PubMedPubMedCentralCrossRefGoogle Scholar
  59. Milenkovic D, Blaza JN, Larsson N-G, Hirst J (2017) The enigma of the respiratory chain Supercomplex. Cell Metab 25:765–776PubMedCrossRefGoogle Scholar
  60. Mio K, Mio M, Arisaka F, Sato M, Sato C (2010) The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog Biophys Mol Biol 103:111–121PubMedCrossRefGoogle Scholar
  61. Mio K, Ogura T, Kiyonaka S, Hiroaki Y, Tanimura Y, Fujiyoshi Y, Mori Y, Sato C (2007) The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 367:373–383PubMedCrossRefGoogle Scholar
  62. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561–3566PubMedPubMedCentralCrossRefGoogle Scholar
  63. Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, Stewart PDS (2014) Membrane protein structure determination—the next generation. Biochim Biophys Acta 1838:78–87PubMedPubMedCentralCrossRefGoogle Scholar
  64. Murray DH, Tamm LK, Kiessling V (2009) Supported double membranes. J Struct Biol 168:183–189PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C (2010) Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169:438–449PubMedCrossRefGoogle Scholar
  66. Oldham ML, Hite RK, Steffen AM, Damko E, Li Z, Walz T, Chen J (2016) A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529:537PubMedPubMedCentralCrossRefGoogle Scholar
  67. Opella SJ, Marassi FM (2017) Applications of NMR to membrane proteins. Arch Biochem Biophys 628:92–101PubMedCrossRefGoogle Scholar
  68. Orwick MC, Judge PJ, Procek J, Lindholm L, Graziadei A, Engel A, Gröbner G, Watts A (2012) Detergent-free formation and physicochemical characterization of nanosized lipid–polymer complexes: Lipodisq. Angew Chem Int Ed Engl 51:4653–4657PubMedCrossRefGoogle Scholar
  69. Oshima A, Tani K, Fujiyoshi Y (2016) Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat Commun 7:13681PubMedPubMedCentralCrossRefGoogle Scholar
  70. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996PubMedCrossRefGoogle Scholar
  71. Paulsen CE, Armache J-P, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520:511PubMedPubMedCentralCrossRefGoogle Scholar
  72. Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379PubMedPubMedCentralCrossRefGoogle Scholar
  73. Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408PubMedCrossRefGoogle Scholar
  74. Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397PubMedCrossRefGoogle Scholar
  75. Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X (2017) Structure of the human lipid exporter ABCA1. Cell 7:1228–1239CrossRefGoogle Scholar
  76. Richter R, Mukhopadhyay A, Brisson A (2003) Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys J 85:3035–3047PubMedPubMedCentralCrossRefGoogle Scholar
  77. Rigaud J-L, Lévy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86PubMedCrossRefGoogle Scholar
  78. Ritchie T, Grinkova Y, Bayburt T, Denisov I, Zolnerciks J, Atkins W, Sligar S (2009) Chapter eleven-reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rosevear P, VanAken T, Baxter J, Ferguson-Miller S (1980) Alkyl glycoside detergents: a simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochemistry 19:4108–4115PubMedCrossRefGoogle Scholar
  80. Saliba A-E, Vonkova I, Gavin A-C (2015) The systematic analysis of protein-lipid interactions comes of age. Nat Rev Mol Cell Biol 16:753PubMedCrossRefGoogle Scholar
  81. Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530PubMedPubMedCentralCrossRefGoogle Scholar
  82. Schmidt-Krey I, Rubinstein JL (2011) Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles. Micron 42:107–116PubMedCrossRefGoogle Scholar
  83. Schulz S, Wilkes M, Mills DJ, Kühlbrandt W, Meier T (2017) Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. EMBO Rep 18:526–535PubMedPubMedCentralCrossRefGoogle Scholar
  84. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117PubMedCrossRefGoogle Scholar
  85. Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE, Cao E (2016) The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167:763–773PubMedCrossRefGoogle Scholar
  86. Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N (2017) Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355:eaal4326PubMedCrossRefGoogle Scholar
  87. Shih AY, Denisov IG, Phillips JC, Sligar SG, Schulten K (2005) Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys J 88:548–556PubMedCrossRefGoogle Scholar
  88. Taylor KA, Glaeser RM (1976) Electron microscopy of frozen hydrated biological specimens. J Ultrastruct Res 55:448–456PubMedCrossRefGoogle Scholar
  89. Taylor NM, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP (2017) Structure of the human multidrug transporter ABCG2. Nature 546:504–509PubMedGoogle Scholar
  90. Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26PubMedCrossRefGoogle Scholar
  91. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114PubMedCrossRefGoogle Scholar
  92. Tonge S, Tighe B (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122PubMedCrossRefGoogle Scholar
  93. Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050PubMedPubMedCentralCrossRefGoogle Scholar
  94. VanAken T, Foxall-VanAken S, Castleman S, Ferguson-Miller S (1986) Alkyl glycoside detergents: synthesis and applications to the study of membrane proteins. Methods Enzymol 125:27–35PubMedCrossRefGoogle Scholar
  95. Wallin E, Heijne GV (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wang L, Sigworth FJ (2009) Cryo-EM structure of the BK potassium channel in a lipid membrane. Nature 461:292PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wang X, Mu Z, Li Y, Bi Y, Wang Y (2015) Smaller nanodiscs are suitable for studying protein lipid interactions by solution NMR. Protein J 34:205–211PubMedCrossRefGoogle Scholar
  98. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974PubMedCrossRefGoogle Scholar
  99. Whicher JR, MacKinnon R (2016) Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353:664–669PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wilkes M, Madej MG, Kreuter L, Rhinow D, Heinz V, De Sanctis S, Ruppel S, Richter RM, Joos F, Grieben M (2017) Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nature 201:123–130Google Scholar
  101. Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N (2016) Structure of the voltage-gated calcium channel Cav1. 1 at 3.6 Å resolution. Nature 537:191–196PubMedCrossRefGoogle Scholar
  102. Xu J, Gui M, Wang D, Xiang Y (2016) The bacteriophage phi29 tail possesses a pore-forming loop for cell membrane penetration. Nature 534:544–544PubMedCrossRefGoogle Scholar
  103. Yang G, Zhou R, Shi Y (2017) Cryo-EM structures of human γ-secretase. Curr Opin Struct Biol 46:55–64PubMedCrossRefGoogle Scholar
  104. Zalk R, Marks AR (2017) Ca2+ release channels join the ‘resolution revolution. Trends Biochem Sci 42:543–555PubMedCrossRefGoogle Scholar
  105. Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A (2016) Reconstitution of the Cytb5–CytP450 complex in nanodiscs for structural studies using NMR spectroscopy. Angew Chem Int Ed Engl 55:4497–4499PubMedCrossRefGoogle Scholar
  106. Zhang Y, Sun B, Feng D, Hu H, Chu M, Qu Q, Tarrasch JT, Li S, Kobilka TS, Kobilka BK (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–253PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zhang Z, Chen J (2016) Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167:1586–1597 e1589PubMedCrossRefGoogle Scholar
  108. Zhou H-X, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhu S, Gouaux E (2017) Structure and symmetry inform gating principles of ionotropic glutamate receptors. Neuropharmacology 112:11–15PubMedCrossRefGoogle Scholar
  110. Zubcevic L, Herzik Jr MA, Chung BC, Liu Z, Lander GC, Lee S-Y (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23:180PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL)National Institute of Advanced Industrial Science and Technology (AIST)ChibaJapan
  2. 2.Molecular Profiling Research Center for Drug Discovery (molprof)National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  3. 3.Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations