Skip to main content
Log in

Heat denaturation of the antibody, a multi-domain protein

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The antibody is one of the most well-studied multi-domain proteins because of its abundance and physiological importance. In this article, we describe the effect of the complex, multi-domain structure of the antibody on its denaturation by heat. Natural antibodies are composed of 6 to 70 immunoglobulin fold domains, and are irreversibly denatured at high temperatures. Although the separated single immunoglobulin fold domain can be refolded after heat denaturation, denaturation of pairs of such domains is irreversible. Each antibody subclass exhibits a distinct heat tolerance, and IgE is especially known to be heat-labile. IgE starts unfolding at a lower temperature compared to other antibodies, because of the low stability of its CH3 domain. Each immunoglobulin domain starts unfolding at different temperatures. For instance, the CH3 domain of IgG unfolds at a higher temperature than its CH2 domain. Thus, the antibody has a mixture of folded and unfolded structures at a certain temperature. Co-existence of these folded and unfolded domains in a single polypeptide chain may increase the tendency to aggregate which causes the inactivation of the antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akazawa-Ogawa Y, Takashima M, Lee YH, Ikegami T, Goto Y, Uegaki K, Hagihara Y (2014) Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications. J Biol Chem 289:15666–15679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akazawa-Ogawa Y, Uegaki K, Hagihara Y (2016) The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies. J Biochem 159:111–121

    Article  CAS  PubMed  Google Scholar 

  • Augener W, Grey HM (1970) Studies on the mechanism of heat aggregation of human γG. J Immunol 105:1024–1030

    CAS  PubMed  Google Scholar 

  • Binaghi RA, Demeulemester C (1983) Influence of the medium on the heat and acid denaturation of IgE. J Immunol Methods 65:225–233

    Article  CAS  PubMed  Google Scholar 

  • Bloch KJ, Morse HC 3rd, Austen KF (1968) Biologic properties of rat antibodies. I. Antigen-binding by four classes of anti-DNP antibodies. J Immunol 101:650–657

    CAS  PubMed  Google Scholar 

  • Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, Landsman P, Maloney KM (2015) Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies. Mol Pharm 12:1005–1017

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Kong L, Connelly S, Dendle JM, Liu Y, Wilson IA, Powers ET, Kelly JW (2016) Stabilizing the CH2 domain of an antibody by engineering in an enhanced aromatic sequon. ACS Chem Biol 11:1852–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demarest SJ, Rogers J, Hansen G (2004) Optimization of the antibody C(H)3 domain by residue frequency analysis of IgG sequences. J Mol Biol 335:41–48

    Article  CAS  PubMed  Google Scholar 

  • Demarest SJ, Hopp J, Chung J, Hathaway K, Mertsching E, Cao X, George J, Miatkowski K, LaBarre MJ, Shields M, Kehry MR (2006) An intermediate pH unfolding transition abrogates the ability of IgE to interact with its high affinity receptor FcεRIα. J Biol Chem 281:30755–30767

    Article  CAS  PubMed  Google Scholar 

  • Deutscher SL, Crider ME, Ringbauer JA, Komissarov AA, Quinn TP (1996) Stability studies of nucleic acid-binding Fab isolated from combinatorial bacteriophage display libraries. Arch Biochem Biophys 333:207–213

    Article  CAS  PubMed  Google Scholar 

  • Feige MJ, Walter S, Buchner J (2004) Folding mechanism of the CH2 antibody domain. J Mol Biol 344:107–118

    Article  CAS  PubMed  Google Scholar 

  • Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H, Hendershot LM, Buchner J (2009) An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol Cell 34:569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber E, Demarest SJ (2007) A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun 355:751–757

    Article  CAS  PubMed  Google Scholar 

  • Ghirlando R, Lund J, Goodall M, Jefferis R (1999) Glycosylation of human IgG-fc: influences on structure revealed by differential scanning micro-calorimetry. Immunol Lett 68:47–52

    Article  CAS  PubMed  Google Scholar 

  • Hagihara Y, Shiraki K, Nakamura T, Uegaki K, Takagi M, Imanaka T, Yumoto N (2002) Screening for stable mutants with amino acid pairs substituted for the disulfide bond between residues 14 and 38 of bovine pancreatic trypsin inhibitor (BPTI). J Biol Chem 277:51043–51048

    Article  CAS  PubMed  Google Scholar 

  • Hagihara Y, Matsuda T, Yumoto N (2005) Cellular quality control screening to identify amino acid pairs for substituting the disulfide bonds in immunoglobulin fold domains. J Biol Chem 280:24752–24758

    Article  CAS  PubMed  Google Scholar 

  • Henry AJ, McDonnell JM, Ghirlando R, Sutton BJ, Gould HJ (2000) Conformation of the isolated Cε3 domain of IgE and its complex with the high-affinity receptor, FcεRI. Biochemistry 39:7406–7413

    Article  CAS  PubMed  Google Scholar 

  • Holdom MD, Davies AM, Nettleship JE, Bagby SC, Dhaliwal B, Girardi E, Hunt J, Gould HJ, Beavil AJ, McDonnell JM, Owens RJ, Sutton BJ (2011) Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcεRI. Nat Struct Mol Biol 18:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt J, Beavil RL, Calvert RA, Gould HJ, Sutton BJ, Beavil AJ (2005) Disulfide linkage controls the affinity and stoichiometry of IgE Fcε3–4 binding to FcεRI. J Biol Chem 280:16808–16814

    Article  CAS  PubMed  Google Scholar 

  • Indyk HE, Williams JW, Patel HA (2008) Analysis of denaturation of bovine IgG by heat and high pressure using an optical biosensor. Int Dairy J 18:359–366

    Article  CAS  Google Scholar 

  • Ishizaka K, Ishizaka T, Menzel AE (1967) Physicochemical properties of reaginic antibody. VI. Effect of heat on gamma-E-, gamma-G- and gamma-A-antibodies in the sera of ragweed sensitive patients. J Immunol 99:610–618

    CAS  PubMed  Google Scholar 

  • Ishizaka T, Helm B, Hakimi J, Niebyl J, Ishizaka K, Gould H (1986) Biological properties of a recombinant human immunoglobulin epsilon-chain fragment. Proc Natl Acad Sci U S A 83:8323–8327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Tsumoto K (2013) Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress. Protein Sci 22:1542–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jespers L, Schon O, Famm K, Winter G (2004a) Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 22:1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Jespers L, Schon O, James LC, Veprintsev D, Winter G (2004b) Crystal structure of HEL4, a soluble, refoldable human V(H) single domain with a germ-line scaffold. J Mol Biol 337:893–903

    Article  CAS  PubMed  Google Scholar 

  • Kellogg DE, Rybalkin I, Chen S, Mukhamedova N, Vlasik T, Siebert PD, Chenchik A (1994) TaqStart Antibody: “hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. BioTechniques 16:1134–1137

    CAS  PubMed  Google Scholar 

  • Ladenson RC, Crimmins DL, Landt Y, Ladenson JH (2006) Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem 78:4501–4508

    Article  CAS  PubMed  Google Scholar 

  • Mainer G, Sanchez L, Ena JM, Calvo M (1997) Kinetic and thermodynamic parameters for heat denaturation of bovine milk IgG, IgA and IgM. J Food Sci 62:1034–1038

    Article  CAS  Google Scholar 

  • Mainer G, Domínguez E, Randrup M, Sánchez L, Calvo M (1999) Effect of heat treatment on anti-rotavirus activity of bovine colostrum. J Dairy Res 66:131–137

    Article  CAS  PubMed  Google Scholar 

  • Martsev SP, Chumanevich AA, Vlasov AP, Dubnovitsky AP, Tsybovsky YI, Deyev SM, Cozzi A, Arosio P, Kravchuk ZI (2000) Antiferritin single-chain Fv fragment is a functional protein with properties of a partially structured state: comparison with the completely folded V(L) domain. Biochemistry 39:8047–8057

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi H, Nakatsuji M, Fujiwara S, Takagi M, Imanaka T (1999) Characterization and application to hot start PCR of neutralizing monoclonal antibodies against KOD DNA polymerase. J Biochem 126:762–768

    Article  CAS  PubMed  Google Scholar 

  • Prouvost-Danon A, Binaghi RA, Abadie A (1977) Effect of heating at 56 °C on mouse IgE antibodies. Immunochemistry 14:81–84

    Article  CAS  PubMed  Google Scholar 

  • Sharkey DJ, Scalice ER, Christy KG, Atwood SM, Daiss JL (1994) Antibodies as thermolabile switches: high temperature triggering for the polymerase chain reaction. Biotechnology 12:506–509

    Article  CAS  PubMed  Google Scholar 

  • van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431:37–46

    Article  PubMed  Google Scholar 

  • Vermeer AW, Norde W (2000) The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J 78:394–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeer AW, Norde W, van Amerongen A (2000) The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F(ab) and F(c) fragments. Biophys J 79:2150–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voynov V, Chennamsetty N, Kayser V, Helk B, Forrer K, Zhang H, Fritsch C, Heine H, Trout BL (2009) Dynamic fluctuations of protein–carbohydrate interactions promote protein aggregation. PLoS One 4:e8425

    Article  PubMed  PubMed Central  Google Scholar 

  • Wurzburg BA, Garman SC, Jardetzky TS (2000) Structure of the human IgE-Fc Cε3-Cε4 reveals conformational flexibility in the antibody effector domains. Immunity 13:375–385

    Article  CAS  PubMed  Google Scholar 

  • Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 3:568–576

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Hagihara.

Ethics declarations

Conflict of interest

Yoko Akazawa-Ogawa declares that she has no conflict of interest. Hidenori Nagai declares that he has no conflict of interest. Yoshihisa Hagihara declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Biomolecules to Bio-nanomachines - Fumio Arisaka 70th Birthday’ edited by Damien Hall, Junichi Takagi and Haruki Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akazawa-Ogawa, Y., Nagai, H. & Hagihara, Y. Heat denaturation of the antibody, a multi-domain protein. Biophys Rev 10, 255–258 (2018). https://doi.org/10.1007/s12551-017-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0361-8

Keywords

Navigation