Advertisement

Biophysical Reviews

, Volume 10, Issue 2, pp 543–549 | Cite as

Reconstitution of membrane tethering mediated by Rab-family small GTPases

  • Joji Mima
Review

Abstract

Membrane tethering is one of the most critical steps to determine the spatiotemporal specificity of membrane trafficking, which is the process to selectively transport proteins, lipids, and other biological molecules to the appropriate locations in eukaryotic cells, such as subcellular organelles, the plasma membrane, and the extracellular space. Based on genetic, cell biological, biochemical, and structural studies, Rab-family small GTPases and a number of Rab-interacting proteins (termed Rab effectors), including coiled-coil tethering proteins and multisubunit tethering complexes, have been proposed to be key protein components for membrane tethering. Nevertheless, indeed whether and how Rab GTPases and their specific Rab effectors directly act upon and catalyze membrane tethering still remains enigmatic. By chemically defined reconstitution of membrane tethering from purified Rab-family GTPase proteins and synthetic liposomal membranes, recent studies have revealed the intrinsic potency of Rab-family GTPases to physically and specifically tether two distinct lipid bilayers of liposomal membranes. Experimental evidence from these reconstitution studies support the novel working model in which Rab-family small GTPases act as a bona fide membrane tether for mediating membrane tethering events in eukaryotic membrane trafficking.

Keywords

Membrane reconstitution Membrane trafficking Membrane tethering Rab protein Small GTPase Liposome 

Notes

Acknowledgements

The author is grateful to Dr. Naoki Tamura (Institute for Protein Research, Osaka University, now Fukushima Medical University School of Medicine) for his substantial contributions to embarking on the research projects of human Rab-mediated membrane tethering. This work was, in part, supported by the Program to Disseminate Tenure Tracking System from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and Grants-in-Aid for Scientific Research from MEXT (to J.M.).

Compliance with ethical standards

Conflict of interest

Joji Mima declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. Ainavarapu SR, Brujić J, Huang HH, Wiita AP, Lu H, Li L, Walther KA, Carrion-Vazquez M, Li H, Fernandez JM (2007) Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys J 92:225–233CrossRefPubMedGoogle Scholar
  2. Akhmanova A, Hammer JA 3rd (2010) Linking molecular motors to membrane cargo. Curr Opin Cell Biol 22:479–487CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker RW, Hughson FM (2016) Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell Biol 17:465–479CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blümer J, Rey J, Dehmelt L, Mazel T, Wu YW, Bastiaens P, Goody RS, Itzen A (2013) RabGEFs are a major determinant for specific Rab membrane targeting. J Cell Biol 200:287–300CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166CrossRefPubMedGoogle Scholar
  6. Brunet S, Sacher M (2014) Are all multisubunit tethering complexes bona fide tethers? Traffic 15:1282–1287CrossRefPubMedGoogle Scholar
  7. Cabrera M, Ungermann C (2013) Guanine nucleotide exchange factors (GEFs) have a critical but not exclusive role in organelle localization of Rab GTPases. J Biol Chem 288:28704–28712CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671–682CrossRefPubMedGoogle Scholar
  9. Chia PZ, Gleeson PA (2014) Membrane tethering. F1000Prime Rep 6:74CrossRefPubMedPubMedCentralGoogle Scholar
  10. Edler E, Stein M (2017) Probing the druggability of membrane-bound Rab5 by molecular dynamics simulations. J Enzyme Inhib Med Chem 32:434–443CrossRefPubMedGoogle Scholar
  11. Edler E, Schulze E, Stein M (2017) Membrane localization and dynamics of geranylgeranylated Rab5 hypervariable region. Biochim Biophys Acta 1859:1335–1349CrossRefPubMedGoogle Scholar
  12. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51CrossRefPubMedPubMedCentralGoogle Scholar
  13. Furukawa N, Mima J (2014) Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci Rep 4:4277CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gerondopoulos A, Langemeyer L, Liang JR, Linford A, Barr FA (2012) BLOC-3 mutated in Hermansky–Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr Biol 22:2135–2139CrossRefPubMedPubMedCentralGoogle Scholar
  15. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821–11827CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hammer JA 3rd, Wu XS (2002) Rabs grab motors: defining the connections between Rab GTPases and motor proteins. Curr Opin Cell Biol 14:69–75CrossRefPubMedGoogle Scholar
  17. Hickey CM, Wickner W (2010) HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Mol Biol Cell 21:2297–2305CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ho R, Stroupe C (2015) The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane. Mol Biol Cell 26:2655–2663CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ho R, Stroupe C (2016) The HOPS/Class C Vps complex tethers high-curvature membranes via a direct protein–membrane interaction. Traffic 17:1078–1090CrossRefPubMedGoogle Scholar
  20. Hui E, Gaffaney JD, Wang Z, Johnson CP, Evans CS, Chapman ER (2011) Mechanism and function of synaptotagmin-mediated membrane apposition. Nat Struct Mol Biol 18:813–821CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149CrossRefPubMedPubMedCentralGoogle Scholar
  22. Inoshita M, Mima J (2017) Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system. J Biol Chem 292:18500–18517.  https://doi.org/10.1074/jbc.M117.811356 CrossRefPubMedGoogle Scholar
  23. Izawa R, Onoue T, Furukawa N, Mima J (2012) Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity. J Biol Chem 287:3445–3453CrossRefPubMedGoogle Scholar
  24. Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643CrossRefPubMedGoogle Scholar
  25. Khan AR, Ménétrey J (2013) Structural biology of Arf and Rab GTPases’ effector recruitment and specificity. Structure 21:1284–1297CrossRefPubMedGoogle Scholar
  26. Kuhlee A, Raunser S, Ungermann C (2015) Functional homologies in vesicle tethering. FEBS Lett 589:2487–2497CrossRefPubMedGoogle Scholar
  27. Liu TY, Bian X, Romano FB, Shemesh T, Rapoport TA, Hu J (2015) Cis and trans interactions between atlastin molecules during membrane fusion. Proc Natl Acad Sci U S A 112:E1851–E1860CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lo SY, Brett CL, Plemel RL, Vignali M, Fields S, Gonen T, Merz AJ (2012) Intrinsic tethering activity of endosomal Rab proteins. Nat Struct Mol Biol 19:40–47CrossRefGoogle Scholar
  29. Mayer A, Wickner W (1997) Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J Cell Biol 136:307–317CrossRefPubMedPubMedCentralGoogle Scholar
  30. McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Söllner TH, Rothman JE (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407:153–159CrossRefPubMedGoogle Scholar
  31. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ohki S, Düzgüneş N, Leonards K (1982) Phospholipid vesicle aggregation: effect of monovalent and divalent ions. Biochemistry 21:2127–2133CrossRefPubMedGoogle Scholar
  33. Parlati F, Varlamov O, Paz K, McNew JA, Hurtado D, Söllner TH, Rothman JE (2002) Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci U S A 99:5424–5429CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pfeffer SR (1999) Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol 1:E17–E22CrossRefPubMedGoogle Scholar
  35. Rojas AM, Fuentes G, Rausell A, Valencia A (2012) The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 196:189–201CrossRefPubMedPubMedCentralGoogle Scholar
  36. Scales SJ, Chen YA, Yoo BY, Patel SM, Doung YC, Scheller RH (2000) SNAREs contribute to the specificity of membrane fusion. Neuron 26:457–464CrossRefPubMedGoogle Scholar
  37. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525CrossRefPubMedGoogle Scholar
  38. Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846CrossRefPubMedGoogle Scholar
  39. Tamura N, Mima J (2014) Membrane-anchored human Rab GTPases directly mediate membrane tethering in vitro. Biol Open 3:1108–1115CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ungermann C, Sato K, Wickner W (1998) Defining the functions of trans-SNARE pairs. Nature 396:543–548CrossRefPubMedGoogle Scholar
  41. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6:a022616CrossRefPubMedPubMedCentralGoogle Scholar
  43. Waters MG, Pfeffert SR (1999) Membrane tethering in intracellular transport. Curr Opin Cell Biol 11:453–459CrossRefPubMedGoogle Scholar
  44. Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z (2011) LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell 20:444–454CrossRefPubMedGoogle Scholar
  45. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136CrossRefPubMedGoogle Scholar
  46. Wickner W, Rizo J (2017) A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 28:707–711CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yu IM, Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26:137–156CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute for Protein ResearchOsaka UniversitySuitaJapan

Personalised recommendations