Biophysical Reviews

, Volume 10, Issue 2, pp 551–557 | Cite as

Structure and assembly mechanism of virus-associated pyramids

  • Tessa E. F. Quax
  • Bertram Daum


Viruses have developed intricate molecular machines to infect, replicate within and escape from their host cells. Perhaps one of the most intriguing of these mechanisms is the pyramidal egress structure that has evolved in archaeal viruses, such as SIRV2 or STIV1. The structure and mechanism of these virus-associated pyramids (VAPs) has been studied by cryo-electron tomography and complementary biochemical techniques, revealing that VAPs are formed by multiple copies of a virus-encoded 10-kDa protein (PVAP) that integrate into the cell membrane and assemble into hollow, sevenfold symmetric pyramids. In this process, growing VAPs puncture the protective surface layer and ultimately open to release newly replicated viral particles into the surrounding medium. PVAP has the striking capability to spontaneously integrate and self-assemble into VAPs in biological membranes of the archaea, bacteria and eukaryotes. This renders the VAP a universal membrane remodelling system. In this review, we provide an overview of the VAP structure and assembly mechanism and discuss the possible use of VAPs in nano-biotechnology.


Archaeal virus Nanostructure Archaea Sulfolobus Cryo-electron tomography Virion egress 



This work was supported by a Marie-Curie Intra-European fellowship, a Post-doctoral grant from the Carl-Zeiss-Stiftung to T.E.F. Quax and a Research Fellow’s Start-up Grant by the University of Exeter to B. Daum.

Compliance with ethical standards

Conflict of interest

Tessa E.F. Quax declares that she has no conflicts of interest. Bertram Daum declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Adriaenssens EM, Krupovic M, Knezevic P et al (2017) Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol 162:1153–1157. CrossRefPubMedGoogle Scholar
  2. Albers S-V, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426. CrossRefPubMedGoogle Scholar
  3. Bischofberger M, Iacovache I, Gisou van der Goot F (2012) Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12:266–275. CrossRefPubMedGoogle Scholar
  4. Bize A, Karlsson EA, Ekefjärd K et al (2009) A unique virus release mechanism in the Archaea. Proc Natl Acad Sci USA 106:11306–11311. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borgese N, Fasana E (2011) Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta Biomembr 1808:937–946. CrossRefGoogle Scholar
  6. Brumfield SK, Ortmann AC, Ruigrok V et al (2009) Particle assembly and ultrastructural features associated with replication of the lytic Archaeal virus Sulfolobus turreted Icosahedral virus. J Virol 83:5964–5970. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Daum B, Quax TEF, Sachse M et al (2014) Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids. Proc Natl Acad Sci USA 111:3829–3834. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dellas N, Snyder JC, Bolduc B, Young MJ (2014) Archaeal viruses: diversity, replication, and structure. Annu Rev Virol 1:399–426. CrossRefPubMedGoogle Scholar
  9. DiMaio F, Yu X, Rensen E et al (2015) A virus that infects a hyperthermophile encapsidates A-form DNA. Science 348(80):914–917. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fu C, Wang K, Gan L et al (2010) In vivo assembly of an Archaeal virus studied with whole-cell electron cryotomography. Structure 18:1579–1586. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Guillière F, Peixeiro N, Kessler A et al (2009) Structure, function, and targets of the transcriptional regulator SvtR from the hyperthermophilic archaeal virus SIRV1. J Biol Chem 284:22222–22237. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Haring M, Rachel R, Peng X et al (2005) Viral diversity in Hot Springs of Pozzuoli, Italy, and characterization of a unique Archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae. J Virol 79:9904–9911. doi: 10.1128/JVI.79.15.9904-9911.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Häring M, Vestergaard G, Rachel R et al (2005) Virology: independent virus development outside a host. Nature 436:1101–1102. CrossRefPubMedGoogle Scholar
  14. Hong C, Pietilä MK, Fu CJ et al (2015) Lemon-shaped halo archaeal virus His1 with uniform tail but variable capsid structure. Proc Natl Acad Sci USA 112:2449–2454. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kahsay RY, Gao G, Liao L (2005) An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics 21:1853–1858. CrossRefPubMedGoogle Scholar
  16. Kasson P, DiMaio F, Yu X et al (2017) Model for a novel membrane envelope in a filamentous hyperthermophilic virus. eLIFE 6:e26268.
  17. Krupovic M, Dutilh BE, Adriaenssens EM et al (2016) Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol 161:1095–1099. CrossRefPubMedGoogle Scholar
  18. Larson ET, Reiter D, Young M, Lawrence CM (2006) Structure of A197 from Sulfolobus turreted icosahedral virus: a crenarchaeal viral glycosyltransferase exhibiting the GT-a fold. J Virol 80:7636–7644. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Maaty WSA, Ortmann AC, Dlakic M et al (2006) Characterization of the Archaeal thermophile Sulfolobus turreted Icosahedral virus validates an evolutionary link among double-stranded DNA viruses from all domains of life. J Virol 80:7625–7635. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mochizuki T, Yoshida T, Tanaka R et al (2010) Diversity of viruses of the hyperthermophilic archaeal genus Aeropyrum, and isolation of the Aeropyrum pernix bacilliform virus 1, APBV1, the first representative of the family Clavaviridae. Virology 402:347–354. CrossRefPubMedGoogle Scholar
  21. Mochizuki T, Sako Y, Prangishvili D (2011) Provirus induction in hyperthermophilic archaea: characterization of Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1. J Bacteriol 193:5412–5419. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mochizuki T, Krupovic M, Pehau-Arnaudet G et al (2012) Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome. Proc Natl Acad Sci USA 109:13386–13391. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Peng X, Blum H, She Q et al (2001) Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses. Virology 291:226–234. CrossRefPubMedGoogle Scholar
  24. Pina M, Bize A, Forterre P, Prangishvili D (2011) The archeoviruses. FEMS Microbiol Rev 35:1035–1054CrossRefPubMedGoogle Scholar
  25. Porter K, Kukkaro P, Bamford JKH et al (2005) SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335:22–33. CrossRefPubMedGoogle Scholar
  26. Prangishvili D (2006) 14 hyperthermophilic virus–host systems: detection and isolation. In: Rainey FA, Oren A (eds) Methods in microbiology. Elsevier, Amsterdam, pp 331–347Google Scholar
  27. Prangishvili D (2013) The wonderful world of Archaeal viruses. Annu Rev Microbiol 67:565–585. CrossRefPubMedGoogle Scholar
  28. Prangishvili D, Quax TEF (2011) Exceptional virion release mechanism: one more surprise from archaeal viruses. Curr Opin Microbiol 14:315–320. CrossRefPubMedGoogle Scholar
  29. Prangishvili D, Arnold HP, Götz D et al (1999) A novel virus family, the Rudiviridae: structure, virus-host interactions and genome variability of the sulfolobus viruses SIRV1 and SIRV2. Genetics 152:1387–1396PubMedPubMedCentralGoogle Scholar
  30. Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the Archaea: a unifying view. Nat Rev Microbiol 4:837–848. CrossRefPubMedGoogle Scholar
  31. Quax TEF, Krupovic M, Lucas S et al (2010) The Sulfolobus rod-shaped virus 2 encodes a prominent structural component of the unique virion release system in Archaea. Virology 404:1–4. CrossRefPubMedGoogle Scholar
  32. Quax TEF, Lucas S, Reimann J et al (2011) Simple and elegant design of a virion egress structure in Archaea. Proc Natl Acad Sci USA 108:3354–3359. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Quax TEF, Voet M, Sismeiro O et al (2013) Massive activation of archaeal defense genes during viral infection. J Virol 87:8419–8428. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Quemin ERJ, Quax TEF (2015) Archaeal viruses at the cell envelope: entry and egress. Front Microbiol 6:552. doi: 10.3389/fmicb.2015.00552 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Quemin ERJ, Lucas S, Daum B et al (2013) First insights into the entry process of hyperthermophilic archaeal viruses. J Virol 87:13379–13385. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rensen E, Krupovic M, Prangishvili D (2015) Mysterious hexagonal pyramids on the surface of Pyrobaculum cells. Biochimie 118:365–367. CrossRefPubMedGoogle Scholar
  37. Rice G, Tang L, Stedman K et al (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc Natl Acad Sci USA 101:7716–7720. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sapay N, Guermeur Y, Deléage G (2006) Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinf 7:255. CrossRefGoogle Scholar
  39. Savva CG, Dewey JS, Moussa SH et al (2014) Stable micron-scale holes are a general feature of canonical holins. Mol Microbiol 91:57–65. CrossRefPubMedGoogle Scholar
  40. Schleper C, Kubo K, Zillig W (1992) The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci USA 89:7645–7649CrossRefPubMedPubMedCentralGoogle Scholar
  41. Snyder JC, Brumfield SK, Peng N et al (2011) Sulfolobus turreted Icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures. J Virol 85:6287–6292. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Snyder JC, Brumfield SK, Kerchner KM et al (2013a) Insights into a viral lytic pathway from an archaeal virus-host system. J Virol 87:2186–2192. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Snyder JC, Samson RY, Brumfield SK et al (2013b) Functional interplay between a virus and the ESCRT machinery in Archaea. Proc Natl Acad Sci USA 110:10783–10787. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vestergaard G, Shah SA, Bize A et al (2008) Stygiolobus rod-shaped virus and the interplay of Crenarchaeal Rudiviruses with the CRISPR antiviral system. J Bacteriol 190:6837–6845. doi: 10.1128/JB.00795-08 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Witte A, Baranyi U, Klein R et al (1997) Characterization of Natronobacterium magadii phage phi Ch1, a unique archaeal phage containing DNA and RNA. Mol Microbiol 23:603–616CrossRefPubMedGoogle Scholar
  46. Zillig W, Kletzin A, Schleper C et al (1993) Screening for Sulfolobales, their plasmids and their viruses in Icelandic Solfataras. Syst Appl Microbiol 16:609–628. CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Molecular Biology of Archaea, Institute of Biology IIUniversity of FreiburgFreiburgGermany
  2. 2.Living Systems InstituteUniversity of ExeterExeterUK

Personalised recommendations