Skip to main content
Log in

Recent progress on understanding the mechanisms of amyloid nucleation

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arosio P, Knowles TP, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auer S, Dobson CM, Vendruscolo M (2007) Characterization of the nucleation barriers for protein aggregation and amyloid formation. HFSP J 1:137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auer S, Ricchiuto P, Kashchiev D (2012) Two-step nucleation of amyloid fibrils: omnipresent or not? J Mol Biol 422:723–730

    Article  CAS  PubMed  Google Scholar 

  • Baftizadeh F, Biarnes X, Pietrucci F, Affinito F, Laio A (2012) Multidimensional view of amyloid fibril nucleation in atomistic detail. J Am Chem Soc 134:3886–3894

    Article  CAS  PubMed  Google Scholar 

  • Bitan G, Teplow DB (2004) Rapid photochemical cross-linking--a new tool for studies of metastable, amyloidogenic protein assemblies. Acc Chem Res 37:357–364

    Article  CAS  PubMed  Google Scholar 

  • Bleiholder C, Dupuis NF, Wyttenbach T, Bowers MT (2011) Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat Chem 3:172–177

    Article  CAS  PubMed  Google Scholar 

  • Breydo L, Uversky VN (2015) Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett 589:2640–2648

    Article  CAS  PubMed  Google Scholar 

  • Cabriolu R, Kashchiev D, Auer S (2010) Atomistic theory of amyloid fibril nucleation. J Chem Phys 133:225101

    Article  PubMed  Google Scholar 

  • Chatani E, Goto Y (2005) Structural stability of amyloid fibrils of β2-microglobulin in comparison with its native fold. Biochim Biophys Acta 1753:64–75

    Article  CAS  PubMed  Google Scholar 

  • Chatani E, Imamura H, Yamamoto N, Kato M (2014) Stepwise organization of the β-structure identifies key regions essential for the propagation and cytotoxicity of insulin amyloid fibrils. J Biol Chem 289:10399–10410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatani E, Inoue R, Imamura H, Sugiyama M, Kato M, Yamamoto M, Nishida K, Kanaya T (2015) Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering. Sci Rep 5:15485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay S, Erdemir D, Evans JMB, Ilavsky J, Amenitsch H, Segre CU, Myerson AS (2005) SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst Growth Des 5:523–527

    Article  CAS  Google Scholar 

  • Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid. Nat Struct Mol Biol 14:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Cohen SI, Vendruscolo M, Dobson CM, Knowles TP (2012) From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol 421:160–171

    Article  CAS  PubMed  Google Scholar 

  • Crespo R, Rocha FA, Damas AM, Martins PM (2012) A generic crystallization-like model that describes the kinetics of amyloid fibril formation. J Biol Chem 287:30585–30594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  • Eghiaian F, Daubenfeld T, Quenet Y, van Audenhaege M, Bouin AP, van der Rest G, Grosclaude J, Rezaei H (2007) Diversity in prion protein oligomerization pathways results from domain expansion as revealed by hydrogen/deuterium exchange and disulfide linkage. Proc Natl Acad Sci USA104:7414–7419

  • Erdemir D, Lee AY, Myerson AS (2009) Nucleation of crystals from solution: classical and two-step models. Acc Chem Res 42:621–629

    Article  CAS  PubMed  Google Scholar 

  • Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274

    Article  CAS  PubMed  Google Scholar 

  • Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid—from bacteria to humans. Trends Biochem Sci 32:217–224

    Article  CAS  PubMed  Google Scholar 

  • Garcia GA, Cohen SI, Dobson CM, Knowles TP (2014) Nucleation-conversion-polymerization reactions of biological macromolecules with prenucleation clusters. Phys Rev E Stat Nonlinear Soft Matter Phys 89:032712

    Article  Google Scholar 

  • Gebauer D, Kellermeier M, Gale JD, Bergstrom L, Colfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43:2348–2371

    Article  CAS  PubMed  Google Scholar 

  • Groenning M, Frokjaer S, Vestergaard B (2009) Formation mechanism of insulin fibrils and structural aspects of the insulin fibrillation process. Curr Protein Pept Sci 10:509–528

    Article  CAS  PubMed  Google Scholar 

  • Harano K, Homma T, Niimi Y, Koshino M, Suenaga K, Leibler L, Nakamura E (2012) Heterogeneous nucleation of organic crystals mediated by single-molecule templates. Nat Mater 11:877–881

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter J, Ross PD, Eaton WA (1974) Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci USA 71:4864–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh MC, Lynn DG, Grover MA (2017) Kinetic model for two-step nucleation of peptide assembly. J Phys Chem B 121:7401–7411

    Article  CAS  PubMed  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW (2012) The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol 421:185–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamihira M, Naito A, Tuzi S, Nosaka AY, Saito H (2000) Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR. Protein Sci 9:867–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashchiev D, Auer S (2010) Nucleation of amyloid fibrils. J Chem Phys 132:215101

    Article  PubMed  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  • Kelly JW (2000) Mechanisms of amyloidogenesis. Nat Struct Biol 7:824–826

    Article  CAS  PubMed  Google Scholar 

  • Laganowsky A, Liu C, Sawaya MR, Whitelegge JP, Park J, Zhao M, Pensalfini A, Soriaga AB, Landau M, Teng PK, Cascio D, Glabe C, Eisenberg D (2012) Atomic view of a toxic amyloid small oligomer. Science 335:1228–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Culyba EK, Powers ET, Kelly JW (2011) Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nat Chem Biol 7:602–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh ND, Sen S, Bosman M, Tan SF, Zhong J, Nijhuis CA, Kral P, Matsudaira P, Mirsaidov U (2017) Multistep nucleation of nanocrystals in aqueous solution. Nat Chem 9:77–82

    CAS  PubMed  Google Scholar 

  • Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes D, Vorontsova MA, Potenza MA, Sanvito T, Sleutel M, Giglio M, Vekilov PG (2015) Do protein crystals nucleate within dense liquid clusters? Acta Crystallogr F Struct Biol Commun 71:815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maury CP (2009) The emerging concept of functional amyloid. J Intern Med 265:329–334

    Article  CAS  PubMed  Google Scholar 

  • Meisl G, Kirkegaard JB, Arosio P, Michaels TC, Vendruscolo M, Dobson CM, Linse S, Knowles TP (2016) Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc 11:252–272

    Article  CAS  PubMed  Google Scholar 

  • Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1794:375–397

    Article  CAS  PubMed  Google Scholar 

  • Nors Pedersen M, Fodera V, Horvath I, van Maarschalkerweerd A, Norgaard Toft K, Weise C, Almqvist F, Wolf-Watz M, Wittung-Stafshede P, Vestergaard B (2015) Direct correlation between ligand-induced α-synuclein oligomers and amyloid-like fibril growth. Sci Rep 5:10422

    Article  Google Scholar 

  • Oosawa F, Kasai M (1962) A theory of linear and helical aggregations of macromolecules. J Mol Biol 4:10–21

    Article  CAS  PubMed  Google Scholar 

  • Paslawski W, Mysling S, Thomsen K, Jorgensen TJ, Otzen DE (2014) Co-existence of two different α-synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry. Angew Chem Int Ed Engl 53:7560–7563

    Article  CAS  PubMed  Google Scholar 

  • Pavlova A, Cheng CY, Kinnebrew M, Lew J, Dahlquist FW, Han S (2016) Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau. Proc Natl Acad Sci USA 113:E127–E136

    Article  CAS  PubMed  Google Scholar 

  • Potapov A, Yau WM, Ghirlando R, Thurber KR, Tycko R (2015) Successive stages of amyloid-β self-assembly characterized by solid-state nuclear magnetic resonance with dynamic nuclear polarization. J Am Chem Soc 137:8294–8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riek R, Eisenberg DS (2016) The activities of amyloids from a structural perspective. Nature 539:227–235

    Article  PubMed  Google Scholar 

  • Saric A, Chebaro YC, Knowles TP, Frenkel D (2014) Crucial role of nonspecific interactions in amyloid nucleation. Proc Natl Acad Sci USA 111:17869–17874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saric A, Michaels TCT, Zaccone A, Knowles TPJ, Frenkel D (2016) Kinetics of spontaneous filament nucleation via oligomers: insights from theory and simulation. J Chem Phys 145:211926

    Article  PubMed  Google Scholar 

  • Sauter A, Roosen-Runge F, Zhang F, Lotze G, Jacobs RM, Schreiber F (2015) Real-time observation of nonclassical protein crystallization kinetics. J Am Chem Soc 137:1485–1491

    Article  CAS  PubMed  Google Scholar 

  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ, Westermark P (2014) Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Int J Exp Clin Invest 21:221–224

    Google Scholar 

  • So M, Hall D, Goto Y (2016) Revisiting supersaturation as a factor determining amyloid fibrillation. Curr Opin Struct Biol 36:32–39

    Article  CAS  PubMed  Google Scholar 

  • Sosso GC, Chen J, Cox SJ, Fitzner M, Pedevilla P, Zen A, Michaelides A (2016) Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem Rev 116:7078–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tycko R (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23:1528–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vekilov PG (2010) The two-step mechanism of nucleation of crystals in solution. Nano 2:2346–2357

    CAS  Google Scholar 

  • Vekilov PG, Vorontsova MA (2014) Nucleation precursors in protein crystallization. Acta Crystallogr F Struct Biol Commun 70:271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestergaard B, Groenning M, Roessle M, Kastrup JS, van de Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5:e134

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivares D, Kaler EW, Lenhoff AM (2005) Quantitative imaging by confocal scanning fluorescence microscopy of protein crystallization via liquid-liquid phase separation. Acta Crystallogr D Biol Crystallogr 61:819–825

    Article  PubMed  Google Scholar 

  • Yoshimura Y, Lin Y, Yagi H, Lee YH, Kitayama H, Sakurai K, So M, Ogi H, Naiki H, Goto Y (2012) Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proc Natl Acad Sci USA 109:14446–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young LM, Ashcroft AE, Radford SE (2017) Small molecule probes of protein aggregation. Curr Opin Chem Biol 39:90–99

    Article  CAS  PubMed  Google Scholar 

  • Zhang TH, Liu XY (2007) How does a transient amorphous precursor template crystallization. J Am Chem Soc 129:13520–13526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our congratulations to Professor Fumio Arisaka on his 70th birthday, and we thank the editors for the great opportunity to participate in this special issue. We thank Dr. Hiroshi Imamura (Ritsumeikan Universiy) for his helpful comments and discussions on the earlier draft of this article. This work was supported by JSPS KAKENHI Grant Numbers JP16H04778, JP16H00772, JP16K17783, and JP17H06352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Chatani.

Ethics declarations

Conflicts of interest

Eri Chatani declares that she has no conflicts of interest. Naoki Yamamoto declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Biomolecules to Bio-nanomachines—Fumio Arisaka 70th Birthday’ edited by Damien Hall, Junichi Takagi and Haruki Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatani, E., Yamamoto, N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev 10, 527–534 (2018). https://doi.org/10.1007/s12551-017-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0353-8

Keywords

Navigation