Membrane-mediated amyloid deposition of human islet amyloid polypeptide
- 229 Downloads
Abstract
Amyloid deposition of human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is closely associated with type II diabetes mellitus. Accumulating evidence indicates that the membrane-mediated aggregation and subsequent deposition of hIAPP are linked to the dysfunction and death of insulin-producing pancreatic β-cells, but the molecular process of hIAPP deposition is poorly understood. In this review, I focus on recent in vitro studies utilizing model membranes to observe the membrane-mediated aggregation/deposition of hIAPP. Membrane surfaces can serve as templates for both hIAPP adsorption and aggregation. Using high-sensitivity surface analyzing/imaging techniques that can characterize the processes of hIAPP aggregation and deposition at the membrane surface, these studies provide valuable insights into the mechanism of membrane damage caused by amyloid deposition of the peptide.
Keywords
Islet amyloid polypeptide Amyloid deposition Model membranes Membrane disruption Type II diabetes mellitusNotes
Compliance with ethical standards
Conflict of interest
Kenji Sasahara declares that he has no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by the author.
References
- Abedini A, Schmidt AM (2013) Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 587:1119–1127PubMedPubMedCentralGoogle Scholar
- Anguiano M, Nowak RJ, Lansbury PT Jr (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343PubMedGoogle Scholar
- Apostolidou M, Jayasinghe SA, Langen R (2008) Structure of α-helical membrane-bound human islet amyloid polypeptide and its implications for membrane-mediated misfolding. J Biol Chem 283:17205–17210PubMedPubMedCentralGoogle Scholar
- Bedrood S, Li Y, Isas JM, Hegde BG, Baxa U, Haworth IS, Langen R (2012) Fibril structure of human islet amyloid polypeptide. J Biol Chem 287:5235–5241PubMedGoogle Scholar
- Brender JR, Dürr UH, Heyl D, Budarapu MB, Ramamoorthy A (2007) Membrane fragmentation by an amyloidogenic fragment of human islet amyloid polypeptide detected by solid-state NMR spectroscopy of membrane nanotubes. Biochim Biophys Acta 1768:2026–2029PubMedPubMedCentralGoogle Scholar
- Brender JR, Hartman K, Reid KR, Kennedy RT, Ramamoorthy A (2008) A single mutation in the nonamyloidogenic region of islet amyloid polypeptide greatly reduces toxicity. Biochemistry 47:12680–12688PubMedPubMedCentralGoogle Scholar
- Brender JR, Hartman K, Nanga RP, Popovych N, de la Salud Bea R, Vivekanandan S, Marsh EN, Ramamoorthy A (2010) Role of zinc in human islet amyloid polypeptide aggregation. J Am Chem Soc 132:8973–8983PubMedPubMedCentralGoogle Scholar
- Brender JR, Salamekh S, Ramamoorthy A (2012) Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc Chem Res 45:454–462PubMedGoogle Scholar
- Brender JR, Krishnamoorthy J, Messina GM, Deb A, Vivekanandan S, La Rosa C, Penner-Hahn JE, Ramamoorthy A (2013) Zinc stabilization of prefibrillar oligomers of human islet amyloid polypeptide. Chem Commun 49:3339–3341Google Scholar
- Byström R, Aisenbrey C, Borowik T, Bokvist M, Lindström F, Sani MA, Olofsson A, Gröbner G (2008) Disordered proteins: biological membranes as two-dimensional aggregation matrices. Cell Biochem Biophys 52:175–189PubMedGoogle Scholar
- Caillon L, Hoffmann AR, Botz A, Khemtemourian L (2016) Molecular structure, membrane interactions, and toxicity of the islet amyloid polypeptide in type 2 diabetes mellitus. J Diabetes Res 2016:5639875PubMedGoogle Scholar
- Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP (2013) Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 587:1106–1118PubMedPubMedCentralGoogle Scholar
- Cecchi C, Stefani M (2013) The amyloid-cell membrane system. The interplay between the biophysical features of oligomers/fibrils and cell membrane defines amyloid toxicity. Biophys Chem 182:30–43PubMedGoogle Scholar
- Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366PubMedGoogle Scholar
- Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68PubMedGoogle Scholar
- Cho WJ, Trikha S, Jeremic AM (2009) Cholesterol regulates assembly of human islet amyloid polypeptide on model membranes. J Mol Biol 393:765–775PubMedGoogle Scholar
- Clark A, Nilsson MR (2004) Islet amyloid: a complication of islet dysfunction or an aetiological factor in type 2 diabetes? Diabetologia 47:157–169PubMedGoogle Scholar
- Clark A, Lewis CE, Willis AC, Cooper GJ, Morris JF, Reid KB, Turner RC (1987) Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 330:231–234Google Scholar
- Cui W, Ma JW, Lei P, Wu WH, Yu YP, Xiang Y, Tong AJ, Zhao YF, Li YM (2009) Insulin is a kinetic but not a thermodynamic inhibitor of amylin aggregation. FEBS J 276:3365–3371PubMedGoogle Scholar
- DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem Soc Rev 41:608–621PubMedGoogle Scholar
- Deverall MA, Gindl E, Sinner EK, Besir H, Ruehe J, Saxton MJ, Naumann CA (2005) Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys J 88:1875–1886PubMedGoogle Scholar
- Dixon MC (2008) Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech 19:151–158PubMedPubMedCentralGoogle Scholar
- Domanov YA, Kinnunen PK (2008) Islet amyloid polypeptide forms rigid lipid–protein amyloid fibrils on supported phospholipid bilayers. J Mol Biol 376:42–54PubMedGoogle Scholar
- Edidin M (2003) The state of lipid rafts: from model membranes to cells. Ann Rev Biophys Biomol Struct 32:257–283Google Scholar
- Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203PubMedPubMedCentralGoogle Scholar
- Engel MF (2009) Membrane permeabilization by islet amyloid polypeptide. Chem Phys Lipids 160:1–10PubMedGoogle Scholar
- Engel MF, Yigittop H, Elgersma RC, Rijkers DT, Liskamp RM, de Kruijff B, Höppener JW, Antoinette Killian J (2006) Islet amyloid polypeptide inserts into phospholipid monolayers as monomer. J Mol Biol 356:783–789PubMedGoogle Scholar
- Engel MF, Khemtémourian L, Kleijer CC, Meeldijk HJ, Jacobs J, Verkleij AJ, de Kruijff B, Killian JA, Höppener JW (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc Natl Acad Sci U S A 105:6033–6038PubMedPubMedCentralGoogle Scholar
- Engel MF, van den Akker CC, Schleeger M, Velikov KP, Koenderink GH, Bonn M (2012) The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution. J Am Chem Soc 134:14781–14788PubMedGoogle Scholar
- Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580PubMedGoogle Scholar
- Foster MC, Leapman RD, Li MX, Atwater I (1993) Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys J 64:525–532PubMedPubMedCentralGoogle Scholar
- Gao M, Winter R (2015) The effects of lipid membranes, crowding and osmolytes on the aggregation, and fibrillation propensity of human IAPP. J Diabetes Res 2015:849017PubMedPubMedCentralGoogle Scholar
- Gedulin B, Cooper GJ, Young AA (1991) Amylin secretion from the perfused pancreas: dissociation from insulin and abnormal elevation in insulin-resistant diabetic rats. Biochem Biophys Res Comm 180:782–789PubMedGoogle Scholar
- Gellermann GP, Appel TR, Tannert A, Radestock A, Hortschansky P, Schroeckh V, Leisner C, Lütkepohl T, Shtrasburg S, Röcken C, Pras M, Linke RP, Diekmann S, Fändrich M (2005) Raft lipids as common components of human extracellular amyloid fibrils. Proc Natl Acad Sci U S A 102:6297–6302PubMedPubMedCentralGoogle Scholar
- Gilead S, Wolfenson H, Gazit E (2006) Molecular mapping of the recognition interface between the islet amyloid polypeptide and insulin. Angew Chem Int Ed Engl 45:6476–6480PubMedGoogle Scholar
- Glazier R, Salaita K (2017) Supported lipid bilayer platforms to probe cell mechanobiology. Biochim Biophys Acta 1859:1465–1482PubMedGoogle Scholar
- Goldsbury CS, Cooper GJ, Goldie KN, Müller SA, Saafi EL, Gruijters WT, Misur MP, Engel A, Aebi U, Kistler J (1997) Polymorphic fibrillar assembly of human amylin. J Struct Biol 119:17–27PubMedGoogle Scholar
- Goldsbury C, Goldie K, Pellaud J, Seelig J, Frey P, Müller SA, Kistler J, Cooper GJ, Aebi U (2000) Amyloid fibril formation from full-length and fragments of amylin. J Struct Biol 130:352–362PubMedGoogle Scholar
- Gorbenko GP, Kinnunen PK (2006) The role of lipid–protein interactions in amyloid-type protein fibril formation. Chem Phys Lipids 141:72–82PubMedGoogle Scholar
- Green JD, Kreplak L, Goldsbury C, Li Blatter X, Stolz M, Cooper GS, Seelig A, Kistler J, Aebi U (2004) Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. J Mol Biol 342:877–887PubMedGoogle Scholar
- Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18:1244–1260PubMedGoogle Scholar
- Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29:303–316PubMedPubMedCentralGoogle Scholar
- Hebda JA, Saraogi I, Magzoub M, Hamilton AD, Miranker AD (2009) A peptidomimetic approach to targeting pre-amyloidogenic states in type II diabetes. Chem Biol 16:943–950PubMedPubMedCentralGoogle Scholar
- Hoppe T, Minton AP (2015) An equilibrium model for the combined effect of macromolecular crowding and surface adsorption on the formation of linear protein fibrils. Biophys J 108:957–966PubMedPubMedCentralGoogle Scholar
- Höppener JW, Lips CJ (2006) Role of islet amyloid in type 2 diabetes mellitus. Int J Biochem Cell Biol 38:726–736PubMedGoogle Scholar
- Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89:3629–3643PubMedGoogle Scholar
- Jaikaran ET, Clark A (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta 1537:179–203PubMedGoogle Scholar
- Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498PubMedGoogle Scholar
- Jayasinghe SA, Langen R (2005) Lipid membranes modulate the structure of islet amyloid polypeptide. Biochemistry 44:12113–12119PubMedGoogle Scholar
- Jayasinghe SA, Langen R (2007) Membrane interaction of islet amyloid polypeptide. Biochim Biophys Acta 1768:2002–2009PubMedGoogle Scholar
- Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, Aston-Mourney K, Carr DB, Westermark P, Westermark GT, Kahn SE, Hull RL (2011) β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640PubMedPubMedCentralGoogle Scholar
- Kahn SE, D’Alessio DA, Schwartz MW, Fujimoto WY, Ensinck JW, Taborsky GJ Jr, Porte D Jr (1990) Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes 39:634–638PubMedGoogle Scholar
- Kahn SE, Andrikopoulos S, Verchere CB (1999) Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48:241–253PubMedGoogle Scholar
- Kajava AV, Aebi U, Steven AC (2005) The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J Mol Biol 348:247–252PubMedGoogle Scholar
- Kapurniotu A (2001) Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. Biopolymers 60:438–459PubMedGoogle Scholar
- Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W, Kapurniotu A (1999) Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J Mol Biol 287:781–796PubMedGoogle Scholar
- Khemtémourian L, Killian JA, Höppener JW, Engel MF (2008) Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β-cell death in type 2 diabetes mellitus. Exp Diabetes Res 2008:421287PubMedPubMedCentralGoogle Scholar
- Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187PubMedGoogle Scholar
- Knight JD, Hebda JA, Miranker AD (2006) Conserved and cooperative assembly of membrane-bound α-helical states of islet amyloid polypeptide. Biochemistry 45:9496–9508PubMedGoogle Scholar
- Knight JD, Williamson JA, Miranker AD (2008) Interaction of membrane-bound islet amyloid polypeptide with soluble and crystalline insulin. Protein Sci 17:1850–1856PubMedPubMedCentralGoogle Scholar
- Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara TK (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36:604–615PubMedGoogle Scholar
- Larson JL, Miranker AD (2004) The mechanism of insulin action on islet amyloid polypeptide fiber formation. J Mol Biol 335:221–231PubMedGoogle Scholar
- Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50PubMedGoogle Scholar
- Lopes DH, Meister A, Gohlke A, Hauser A, Blume AL, Winter R (2007) Mechanism of islet amyloid polypeptide fibrillation at lipid interfaces studied by infrared reflection absorption spectroscopy. Biophys J 93:3132–3141PubMedPubMedCentralGoogle Scholar
- Lorenzo A, Razzaboni B, Weir GC, Yankner BA (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368:756–760PubMedGoogle Scholar
- Luca S, Yau WM, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46:13505–13522PubMedPubMedCentralGoogle Scholar
- Lutz TA (2012) Control of energy homeostasis by amylin. Cell Mol Life Sci 69:1947–1965PubMedGoogle Scholar
- Marguet D, Lenne PF, Rigneault H, He HT (2006) Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J 25:3446–3457PubMedPubMedCentralGoogle Scholar
- Matveyenko AV, Butler PC (2006) β-cell deficit due to increased apoptosis in the human islet amyloid polypeptide transgenic (hip) rat recapitulates the metabolic defects present in type 2 diabetes. Diabetes 55:2106–2114PubMedGoogle Scholar
- Merzlyakov M, Li E, Hristova K (2006) Directed assembly of surface-supported bilayers with transmembrane helices. Langmuir 22:1247–1253PubMedGoogle Scholar
- Mirzabekov TA, Lin MC, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 271:1988–1992PubMedGoogle Scholar
- Nanga RP, Brender JR, Xu J, Veglia G, Ramamoorthy A (2008) Structures of rat and human islet amyloid polypeptide IAPP1–19 in micelles by NMR spectroscopy. Biochemistry 47:12689–12697PubMedPubMedCentralGoogle Scholar
- Nanga RP, Brender JR, Xu J, Hartman K, Subramanian V, Ramamoorthy A (2009) Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy. J Am Chem Soc 131:8252–8261PubMedPubMedCentralGoogle Scholar
- Nanga RP, Brender JR, Vivekanandan S, Ramamoorthy A (2011) Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochim Biophys Acta 1808:2337–2342PubMedPubMedCentralGoogle Scholar
- Nguyen PT, Andraka N, De Carufel CA, Bourgault S (2015) Mechanistic contributions of biological cofactors in islet amyloid polypeptide amyloidogenesis. J Diabetes Res 2015:515307PubMedPubMedCentralGoogle Scholar
- Okazaki T, Inaba T, Tatsu Y, Tero R, Urisu T, Morigaki K (2009) Polymerized lipid bilayers on a solid substrate: morphologies and obstruction of lateral diffusion. Langmuir 25:345–351PubMedGoogle Scholar
- Owen DM, Williamson D, Rentero C, Gaus K (2009) Quantitative microscopy: protein dynamics and membrane organisation. Traffic 10:962–971PubMedGoogle Scholar
- Padrick SB, Miranker AD (2001) Islet amyloid polypeptide: identification of long-range contacts and local order on the fibrillogenesis pathway. J Mol Biol 308:783–794PubMedGoogle Scholar
- Patel HR, Pithadia AS, Brender JR, Fierke CA, Ramamoorthy A (2014) In search of aggregation pathways of IAPP and other amyloidogenic proteins: finding answers through NMR spectroscopy. J Phys Chem Lett 5:1864–1870PubMedGoogle Scholar
- Pithadia A, Brender JR, Fierke CA, Ramamoorthy A (2016) Inhibition of IAPP aggregation and toxicity by natural products and derivatives. J Diabetes Res 2016:2046327PubMedGoogle Scholar
- Porat Y, Kolusheva S, Jelinek R, Gazit E (2003) The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies. Biochemistry 42:10971–10977PubMedGoogle Scholar
- Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102:10427–10432PubMedPubMedCentralGoogle Scholar
- Radovan D, Opitz N, Winter R (2009) Fluorescence microscopy studies on islet amyloid polypeptide fibrillation at heterogeneous and cellular membrane interfaces and its inhibition by resveratrol. FEBS Lett 583:1439–1445PubMedGoogle Scholar
- Relini A, Cavalleri O, Rolandi R, Gliozzi A (2009) The two-fold aspect of the interplay of amyloidogenic proteins with lipid membranes. Chem Phys Lipids 158:1–9PubMedGoogle Scholar
- Relini A, Marano N, Gliozzi A (2014) Probing the interplay between amyloidogenic proteins and membranes using lipid monolayers and bilayers. Adv Colloid Interf Sci 207:81–92Google Scholar
- Richter RP, Bérat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505PubMedGoogle Scholar
- Ritzel RA, Meier JJ, Lin CY, Veldhuis JD, Butler PC (2007) Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets. Diabetes 56:65–71PubMedGoogle Scholar
- Rustenbeck I, Matthies A, Lenzen S (1994) Lipid composition of glucose-stimulated pancreatic islets and insulin-secreting tumor cells. Lipids 29:685–692PubMedGoogle Scholar
- Salamekh S, Brender JR, Hyung SJ, Nanga RP, Vivekanandan S, Ruotolo BT, Ramamoorthy A (2011) A two-site mechanism for the inhibition of IAPP amyloidogenesis by zinc. J Mol Biol 410:294–306PubMedPubMedCentralGoogle Scholar
- Sasahara K, Hall D, Hamada D (2010) Effect of lipid type on the binding of lipid vesicles to islet amyloid polypeptide amyloid fibrils. Biochemistry 49:3040–3048PubMedGoogle Scholar
- Sasahara K, Morigaki K, Okazaki T, Hamada D (2012) Binding of islet amyloid polypeptide to supported lipid bilayers and amyloid aggregation at the membranes. Biochemistry 51:6908–6919PubMedGoogle Scholar
- Sasahara K, Morigaki K, Shinya K (2014) Amyloid aggregation and deposition of human islet amyloid polypeptide at membrane interfaces. FEBS J 281:2597–2612PubMedGoogle Scholar
- Sciacca MF, Kotler SA, Brender JR, Chen J, Lee DK, Ramamoorthy A (2012a) Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation. Biophys J 103:702–710PubMedPubMedCentralGoogle Scholar
- Sciacca MF, Brender JR, Lee DK, Ramamoorthy A (2012b) Phosphatidylethanolamine enhances amyloid fiber-dependent membrane fragmentation. Biochemistry 51:7676–7684PubMedPubMedCentralGoogle Scholar
- Sciacca MF, Lolicato F, Di Mauro G, Milardi D, D’Urso L, Satriano C, Ramamoorthy A, La Rosa C (2016) The role of cholesterol in driving IAPP-membrane interactions. Biophys J 111:140–151PubMedPubMedCentralGoogle Scholar
- Seeliger J, Weise K, Opitz N, Winter R (2012) The effect of Aβ on IAPP aggregation in the presence of an isolated β-cell membrane. J Mol Biol 421:348–363PubMedPubMedCentralGoogle Scholar
- Sellin D, Yan LM, Kapurniotu A, Winter R (2010) Suppression of IAPP fibrillation at anionic lipid membranes via IAPP-derived amyloid inhibitors and insulin. Biophys Chem 150:73–79PubMedGoogle Scholar
- Stefani M, Rigacci S (2013) Protein folding and aggregation into amyloid: the interference by natural phenolic compounds. Int J Mol Sci 14:12411–12457PubMedPubMedCentralGoogle Scholar
- Sumner Makin O, Serpell LC (2004) Structural characterisation of islet amyloid polypeptide fibrils. J Mol Biol 335:1279–1288PubMedGoogle Scholar
- Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159PubMedGoogle Scholar
- Susa AC, Wu C, Bernstein SL, Dupuis NF, Wang H, Raleigh DP, Shea JE, Bowers MT (2014) Defining the molecular basis of amyloid inhibitors: human islet amyloid polypeptide–insulin interactions. J Am Chem Soc 136:12912–12919PubMedPubMedCentralGoogle Scholar
- Tomasello MF, Sinopoli A, Pappalardo G (2015) On the environmental factors affecting the structural and cytotoxic properties of IAPP peptides. J Diabetes Res 2015:918573PubMedPubMedCentralGoogle Scholar
- Trikha S, Jeremic AM (2011) Clustering and internalization of toxic amylin oligomers in pancreatic cells require plasma membrane cholesterol. J Biol Chem 286:36086–36097PubMedPubMedCentralGoogle Scholar
- Vestergaard MD, Hamada T, Takagi M (2008) Using model membranes for the study of amyloid beta:lipid interactions and neurotoxicity. Biotechnol Bioeng 99:753–763PubMedGoogle Scholar
- Wei L, Jiang P, Yau YH, Summer H, Shochat SG, Mu Y, Pervushin K (2009) Residual structure in islet amyloid polypeptide mediates its interactions with soluble insulin. Biochemistry 48:2368–2376PubMedGoogle Scholar
- Weise K, Radovan D, Gohlke A, Opitz N, Winter R (2010) Interaction of hIAPP with model raft membranes and pancreatic beta-cells: cytotoxicity of hIAPP oligomers. ChemBioChem 11:1280–1290PubMedGoogle Scholar
- Westermark P (1973) Fine structure of islets of Langerhans in insular amyloidosis. Virchows Arch A Pathol Pathol Anat 359:1–18PubMedGoogle Scholar
- Westermark P, Engström U, Johnson KH, Westermark GT, Betsholtz C (1990) Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci U S A 87:5036–5040PubMedPubMedCentralGoogle Scholar
- Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826PubMedGoogle Scholar
- Williamson JA, Loria JP, Miranker AD (2009) Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide. J Mol Biol 393:383–396PubMedPubMedCentralGoogle Scholar
- Wiltzius JJ, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C, Eisenberg D (2008) Atomic structure of the cross-β spine of islet amyloid polypeptide (amylin). Protein Sci 17:1467–1474PubMedPubMedCentralGoogle Scholar
- Yamazaki V, Sirenko O, Schafer RJ, Groves JT (2005) Lipid mobility and molecular binding in fluid lipid membranes. J Am Chem Soc 127:2826–2827PubMedGoogle Scholar
- Yanagi K, Ashizaki M, Yagi H, Sakurai K, Lee YH, Goto Y (2011) Hexafluoroisopropanol induces amyloid fibrils of islet amyloid polypeptide by enhancing both hydrophobic and electrostatic interactions. J Biol Chem 286:23959–23966PubMedPubMedCentralGoogle Scholar
- Zhang X, St. Clair JR, London E, Raleigh DP (2017) Islet amyloid polypeptide membrane interactions: effects of membrane composition. Biochemistry 56:376–390PubMedPubMedCentralGoogle Scholar