Detection of epigenetic effects of citrinin using a yeast-based bioassay

Abstract

The present study investigated the effects of citrinin (CIT) on a yeast-transformed human DNA methyltransferase (DNMT) associated with flocculation that can be inhibited by epigenetic mutagens. CIT (0.5–2 μmol/L) inhibited the flocculation levels of yeast transfected with DNMT-genes (DNMT yeast) and the reporter gene activity of FLO1, which has been associated with flocculation. In contrast, the same concentrations of CIT had little effect on reporter activity under the control of a less methylation-sensitive FLO1 promoter. It was also shown that bacterial DNMT activity could be inhibited in the presence of CIT (4 and 40 μmol/L). These results show that CIT has inhibitory activity of DNMT, suggesting that the cytotoxicity of CIT may be involved in epigenetic mutagenicity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arai M, Hibino T (1983) Tumorigenicity of citrinin in male F344 rats. Cancer Lett 17:281–287

    CAS  Article  Google Scholar 

  2. Ashby J, Tennant RW (1991) Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the US NTP. Mutat Res Rev Mutat Res 257:229–306

    CAS  Google Scholar 

  3. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Clin Oncol 11:726

    CAS  Google Scholar 

  4. Bennett JW, Klich M (2003) Mycotoxins. Curr Clin Microbiol Rep 16:497–516

    CAS  Article  Google Scholar 

  5. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    CAS  Article  Google Scholar 

  6. Blaszkewicz M, Muñoz K, Degen GH (2013) Methods for analysis of citrinin in human blood and urine. Arch Toxicol 87:1087–1094

    CAS  Article  Google Scholar 

  7. Bouslimi A, Bouaziz C, Ayed-Boussema I, Hassen W, Bacha H (2008) Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells. Toxicology 251:1–7

    CAS  Article  Google Scholar 

  8. Chang CH, Yu FY, Wu TS, Wang LT, Liu BH (2010) Mycotoxin citrinin induced cell cycle G2/M arrest and numerical chromosomal aberration associated with disruption of microtubule formation in human cells. Toxicol Sci 119:84–92

    Article  Google Scholar 

  9. Chevalier S, Roberts RA (1998) Perturbation of rodent hepatocyte growth control by nongenotoxic hepatocarcinogens: mechanisms and lack of relevance for human health. Oncol Rep 5:1319–1346

    CAS  PubMed  Google Scholar 

  10. Denis H, Ndlovu MN, Fuks F (2011) Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 12:647–656

    CAS  Article  Google Scholar 

  11. [EFSA] European Food Safety Authority (2012) EFSA Panel on Contaminants in the Food Chain (CONTAM) - scientific opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA Journal 10:2605

    Google Scholar 

  12. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  Article  Google Scholar 

  13. Flajs D, Peraica M (2009) Toxicological properties of citrinin. Arch Ind Hyg Toxicol 60:457–464

    CAS  Google Scholar 

  14. Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S (2014) The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta 1839:1242–1255

    CAS  Article  Google Scholar 

  15. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    CAS  Article  Google Scholar 

  16. Herceg Z, Hainaut P (2007) Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol 1:26–41

    CAS  Article  Google Scholar 

  17. Hökby E, Hult K, Gatenbeck S, Rutqvist L (1979) Ochratoxin A and citrinin in 1976 crop of barley stored on farms in Sweden. Acta Agric Scand 29:174–178

    Article  Google Scholar 

  18. Hood R, Hayes A, Scammell J (1976) Effects of prenatal administration of citrinin and viriditoxin to mice. Food Cosmet Toxicol 14:175–178

    CAS  Article  Google Scholar 

  19. IARC (1987) Monographs on the evaluation of carcinogenic risks to humans: overall evaluations of carcinogenicity: an updating of IARC monographs. International Agency for Research on Cancer, Lyon, pp 1–403

    Google Scholar 

  20. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    CAS  Article  Google Scholar 

  21. Jones PA, Laird PW (1999) Cancer-epigenetics comes of age. Nat Genet 21:163

    CAS  Article  Google Scholar 

  22. Knasmuller S, Cavin C, Chakraborty A, Darroudi F, Majer BJ, Huber WW, Ehrlich VA (2004) Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: implications for risk assessment. Nutr Cancer 50:190–197

    Article  Google Scholar 

  23. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    CAS  Article  Google Scholar 

  24. Nelson TS, Kirby LK, Beasley JN, Johnson ZB, Ciegler A (1985) The effect of drying method and storage time on citrinin activity in corn. Poult Sci 64:464–468

    CAS  Article  Google Scholar 

  25. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    CAS  Article  Google Scholar 

  26. Osborne B (1980) The occurrence of ochratoxin A in mouldy bread and flour. Food Cosmet Toxicol 18:615–617

    CAS  Article  Google Scholar 

  27. Petkova-Bocharova T, Castegnaro M, Michelon J, Maru V (1991) Ochratoxin A and other mycotoxins in cereals from an area of Balkan endemic nephropathy and urinary tract tumours in Bulgaria. IARC Sci Publ:83–87

  28. Sabater-Vilar M1, Maas RF, Fink-Gremmels J (1999) Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutat Res 444:7–16

    CAS  Article  Google Scholar 

  29. Scott PM, Van Walbeek W, Kennedy B, Anyeti D (1972) Mycotoxins (ochratoxin A, citrinin, and sterigmatocystin) and toxigenic fungi in grains and other agricultural products. J Agric Food Chem 20:1103–1109

    CAS  Article  Google Scholar 

  30. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    CAS  Article  Google Scholar 

  31. Sugiyama KI, Takamune M, Furusawa H, Honma M (2015) Human DNA methyltransferase gene-transformed yeasts display an inducible flocculation inhibited by 5-aza-2-deoxycytidine. Biochem Biophys Res Commun 456:689–694

    CAS  Article  Google Scholar 

  32. Sugiyama KI, Furusawa H, Shimizu M, Grúz P, Honma M (2016) Epigenetic mutagen as histone modulator can be detected by yeast flocculation. Mutagenesis 31:687–693

    CAS  Article  Google Scholar 

  33. Sugiyama KI, Furusawa H, Grúz P, Honma M (2017a) Detection of epigenetic mutagens including anthracene-derived compounds using yeast FLO1 promoter GFP reporter gene assay. Mutagenesis 32:429–435

    CAS  Article  Google Scholar 

  34. Sugiyama KI, Furusawa H, Grúz P, Honma M (2017b) Functional role of DNA methylation at the FLO1 promoter in budding yeast. FEMS Microbiol Lett 364:fnx221

    Article  Google Scholar 

  35. Tang Y, Gao XD, Wang Y, Yuan BF, Feng YQ (2012) Widespread existence of cytosine methylation in yeast DNA measured by gas chromatography/mass spectrometry. Anal Chem 84:7249–7255

    CAS  Article  Google Scholar 

  36. Wawrzyniak J, Waśkiewicz A (2014) Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates. Food Addit Contam Part A 31:139–148

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number 18K11661 and a Health and Labor Sciences Research Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kei-ichi Sugiyama.

Ethics declarations

Conflict of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, K., Furusawa, H. & Honma, M. Detection of epigenetic effects of citrinin using a yeast-based bioassay. Mycotoxin Res 35, 363–368 (2019). https://doi.org/10.1007/s12550-019-00361-z

Download citation

Keywords

  • Citrinin
  • Epigenetic mutagen
  • Yeast
  • DNA methyltransferase