Advertisement

Mycotoxin Research

, Volume 34, Issue 2, pp 107–116 | Cite as

Monitoring of ochratoxin A and ochratoxin-producing fungi in traditional salami manufactured in Northern Italy

  • C. Merla
  • G. Andreoli
  • C. Garino
  • N. Vicari
  • G. Tosi
  • M. L. Guglielminetti
  • A. Moretti
  • A. Biancardi
  • M. Arlorio
  • M. Fabbi
Original Article

Abstract

Fungi have a crucial role in the correct maturation of salami, but special attention should be addressed to the production of the nephrotoxic, immunotoxic, and carcinogenic mycotoxin ochratoxin A (OTA). In a monitoring study conducted in Northern Italy, OTA was detected by liquid chromatography coupled with mass spectrometry in 13 out 133 samples of traditional salami (9.8% of the total count). Mycological analysis of these samples yielded 247 fungal isolates which were identified to species level. The most frequent species were Penicillium nalgiovense, P. solitum, and P. chrysogenum. P. nordicum, an OTA-producing species commonly found in proteinaceous food, was not found in these samples. Three isolates were found to be Aspergillus westerdijkiae, an OTA-producing species. In order to check the results of the microbiological identification, 19 different strains of Aspergillus and 94 of Penicillium were tested for the presence of a sequence common to OTA-producing fungi by real-time PCR. None of the studied isolates, including the three A. westerdijkiae, possessed the otanpsPN target which is common to OTA-producing strains. Two out of three isolates of the A. westerdijkiae were also PCR-negative for the otanpsPN gene and did not produce OTA in culture. Conversely, this target sequence was amplified from the DNA purified from 14 salami casings including three casings harboring A. westerdijkiae. The amplification of sequences specific for OTA-producing strains performed on total genomic DNA extracted directly from salami casings provided a more suitable approach than PCR analysis of isolates from salami for the OTA-related otanpsPN gene to evaluate the risk of OTA contamination.

Keywords

Salami Aspergillus Penicillium Ochratoxin A otanpsPN gene Mycotoxin 

Notes

Acknowledgments

We thank Luisa Gennari and Paola Scotto di Fasano for technical assistance. This work was supported by the Italian Ministry of Health (research grant number: IZSLER PRC 2013-021).

Compliance with ethical standards

Conflict of interest

None

References

  1. Abbas A, Valez H, Dobson ADW (2009) Analysis of the effect of nutritional factors on OTA and OTB biosynthesis and polyketide synthase gene expression in aspergillus ochraceus. Int J Food Microbiol 135(1):22–27.  https://doi.org/10.1016/j.ijfoodmicro.2009.07.014 CrossRefPubMedGoogle Scholar
  2. Armorini S, Altafini A, Zaghini A, Roncada P (2016) Ochratoxin A in artisan salami produced in Veneto (Italy). Food Addit Contam Part B Surveill 9(1):9–14.  https://doi.org/10.1080/19393210.2015.1098735 CrossRefPubMedGoogle Scholar
  3. Battilani P, Pietri VA, Giorni P, Formenti S, Bertuzzi T, Toscani T, Virgili R, Kozakiewicz Z (2007) Penicillium populations in dry-cured ham manufacturing plants. J Food Prot 70(4):975–980.  https://doi.org/10.4315/0362-028X-70.4.975 CrossRefPubMedGoogle Scholar
  4. Biancardi A, Piro R, Galaverna G, Dall’Asta C (2013) A simple and reliable liquid chromatography-tandem mass spectrometry method for determination of ochratoxin A in hard cheese. Int J Food Sci Nutr 64(5):632–640.  https://doi.org/10.3109/09637486.2013.763911 CrossRefPubMedGoogle Scholar
  5. Bogs C, Battilani P, Geisen R (2006) Development of a molecular detection and differentiation system for ochratoxin A producing Penicillium species and its application to analyse the occurrence of Penicillium nordicum in cured meats. Int J Food Microbiol 107(1):39–47.  https://doi.org/10.1016/j.ijfoodmicro.2005.08.010 CrossRefPubMedGoogle Scholar
  6. Castellari C, Quadrari AM, Laich F (2010) Surface mycobiota on Argentinean dry fermented sausages. Int J Food Microbiol 142(1-2):149–155.  https://doi.org/10.1016/j.ijfoodmicro.2010.06.016 CrossRefPubMedGoogle Scholar
  7. Conter M, Zanardi E, Ghidini S, Pedrelli P, Chizzolini R, Rason J (2005) Indagine sui produttori artigianali di salumi. Valutazioni socioeconomiche e tecnologiche. Traditional dry sausage producers of Northern Italy: a comprehensive analysis. Industrie Alimentari XLIV:1–8Google Scholar
  8. Cook PE (2013) Fungal ripened meats and meat products. In: Campbell-Platt G, Cook PE (eds) Fermented meats. Springer Science Business Media, B. V., Reading, pp 115–116Google Scholar
  9. Dall’Asta C, Galaverna G, Bertuzzi T, Moseriti A, Pietri A, Dossena A, Marchelli R (2010) Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham from pigs fed with contaminated diet. Food Chem 120(4):978–983.  https://doi.org/10.1016/j.foodchem.2009.11.036 CrossRefGoogle Scholar
  10. Dooley JSF, Roberts TA (2000) Control of vegetative micro-organisms in foods. Br Med Bull 56(1):142–157.  https://doi.org/10.1258/0007142001902851 CrossRefPubMedGoogle Scholar
  11. Dragoni I, Cantoni C, Papa A, Vallone L (2000) Muffe alimenti e micotossicosi. Clesav, MilanGoogle Scholar
  12. EFSA Panel on Contaminants in the Food Chain (2006) Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A in food. EFSA J 365:1–56.  https://doi.org/10.2903/j.efsa.2006.365 Google Scholar
  13. European Union (2010) Commission Regulation (EC) No. 105/2010 of 5 February 2010 amending regulation (EC) no 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. OJEU L35:7–8Google Scholar
  14. Fazekas B, Tar A, Kovács M (2005) Aflatoxin and ochratoxin A content of spices in Hungary. Food Addit Contam 22(9):856–863.  https://doi.org/10.1080/02652030500198027 CrossRefPubMedGoogle Scholar
  15. Filtenborg O, Frisvad JC, Thrane U (1996) Moulds in food spoilage. Int J Food Microbiol 33(1):85–102.  https://doi.org/10.1016/0168-1605(96)01153-1 CrossRefPubMedGoogle Scholar
  16. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium: a guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174Google Scholar
  17. Frisvad JC, Frank JM, Houbraken JAMP, Kuijpers AFA, Samson RA (2004) New ochratoxin A producing species of Aspergillus section Circumdati. Stud Mycol 50:23–44Google Scholar
  18. Geisen R (2004) Molecular monitoring of environmental conditions influencing the induction of ochratoxin a biosynthesis gene in Penicillium nordicum. Mol Nutr Food Res 48(7):532–540.  https://doi.org/10.1002/mnfr.200400036 CrossRefPubMedGoogle Scholar
  19. Gil-Serna J, Vázquez C, Sardiñas N, González-Jaén MT, Patiño B (2009) Discrimination of the main Ochratoxin A-producing species in Aspergillus section Circumdati by specific PCR assays. Int J Food Microbiol 136(1):83–87.  https://doi.org/10.1016/j.ijfoodmicro.2009.09.018 CrossRefPubMedGoogle Scholar
  20. Gil-Serna J, Vazquez C, Sardiñas N, Gonzalez-Jaen MT, Patiño B (2011) Revision of ochratoxin a production capacity by the main species of Aspergillus section Circumdati. Aspergillus steynii revealed as the main risk of OTA contamination. Food Control 22(2):343–345.  https://doi.org/10.1016/j.foodcont.2010.06.018 CrossRefGoogle Scholar
  21. Gil-Serna J, Patiño B, Cortes L, Gonzalez-Jaen MT, Vazquez C (2015) Aspergillus steynii and Aspergillus westerdijkiae as potential risk of OTA contamination in food products in warm climates. Food Microbiol 46:168–175.  https://doi.org/10.1016/j.fm.2014.07.013 CrossRefPubMedGoogle Scholar
  22. Grazia L, Romano P, Bagni A, Roggiani D, Guglielmi G (1986) The role of moulds in the ripening process of salami. Food Microbiol 9:19–25CrossRefGoogle Scholar
  23. Harris JP, Mantle PG (2001) Biosynthesis of ochratoxins by Aspergillus ochraceus. Phytochemistry 58(5):709–716.  https://doi.org/10.1016/S0031-9422(01)00316-8 CrossRefPubMedGoogle Scholar
  24. Hocking AD, Pitt JI (1980) Dichloran-glycerol medium for enumeration of xerophilic fungi from low moisture food. Appl Environ Microbiol 39(3):488–492PubMedPubMedCentralGoogle Scholar
  25. Iacumin L, Chiesa L, Boscolo D, Manzano M, Cantoni C, Orlic S, Comi G (2009) Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol 26(1):65–70.  https://doi.org/10.1016/j.fm.2008.07.006 CrossRefPubMedGoogle Scholar
  26. Iacumin L, Milesi S, Pirani S, Comi G, Chiesa LM (2011) Ochratoxigenic mold and ochratoxin A in fermented sausages from different areas in Northern Italy: occurrence, reduction or prevention with ozonated air. J Food Saf 31(4):538–545.  https://doi.org/10.1111/j.1745-4565.2011.00332.x CrossRefGoogle Scholar
  27. Iavicoli I, Brera C, Carelli G, Caputi R, Marinaccio A, Miraglia M (2002) External and internal dose in subjects occupationally exposed to ochratoxin A. Int Arch Occup Environ Health 75(6):381–386.  https://doi.org/10.1007/s00420-002-0319-3 CrossRefPubMedGoogle Scholar
  28. Italian Ministry of Health (1999) Circolare Ministero della Sanità n. 10 del 09/06/1999, Gazzetta Ufficiale n. 135Google Scholar
  29. Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2002) Evaluation of certain mycotoxins in food: ochratoxin A. WHO, Geneva, Switzerland WHO Technical Report Series 906Google Scholar
  30. Karolewiez A, Geisen R (2005) Cloning a part of the ochratoxin A biosynthetic gene cluster of Penicillium nordicum and characterization of the ochratoxin polyketide synthase gene. Syst Appl Microbiol 28(7):588–595.  https://doi.org/10.1016/j.syapm.2005.03.008 CrossRefPubMedGoogle Scholar
  31. Kim S, Labbe RG, Ryu S (2000) Inhibitory effects of collagen on the PCR for detection of Clostridium perfringens. Appl Environ Microbiol 66(3):1213–1215.  https://doi.org/10.1128/AEM.66.3.1213-1215.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  32. King AD, Hocking AD, Pitt JI (1979) Dichloran Rose Bengal medium for enumeration and isolation of molds from foods. Appl Environ Microbiol 37(5):959–964PubMedPubMedCentralGoogle Scholar
  33. Kuntawee S, Akarapisan A (2015) Isolation and identification of Aspergillus species producing Ochratoxin a in Arabica coffee beans. J Agric Technol 11:1235–1242Google Scholar
  34. Lopez Dıaz TM, Santos JA, Garcıa Lopez ML, Otero A (2001) Surface mycoflora of a Spanish fermented meat sausage and toxigenicity of Penicillium isolates. Int J Food Microbiol 68(1-2):69–74.  https://doi.org/10.1016/S0168-1605(01)00472-X CrossRefPubMedGoogle Scholar
  35. Ludemann V, Pose G, Pollio ML, Segura J (2004) Determination of growth characteristics and lipolytic and proteolytic activities of Penicillium strains isolated from Argentinean salami. Int J Food Microbiol 96(1):13–18.  https://doi.org/10.1016/j.ijfoodmicro.2004.03.003 CrossRefPubMedGoogle Scholar
  36. Markov K, Pleadin J, Bevardi M, Vahic N, Sokolic-Mihalak D, Jadranka F (2013) Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in Croatian fermented meat products. Food Control 34(2):312–317.  https://doi.org/10.1016/j.foodcont.2013.05.002 CrossRefGoogle Scholar
  37. Monaci L, Palmisano F, Matrella R, Tantillo G (2005) Determination of ochratoxin A at part-per-trillion level in Italian salami by immunoaffinity clean-up and high-performance liquid chromatography with fluorescence detection. J Chromatogr A 1090(1-2):184–187.  https://doi.org/10.1016/j.chroma.2005.07.020 CrossRefPubMedGoogle Scholar
  38. Papagianni M, Ambrosiadis I, Filiousis G (2007) Mould growth on traditional Greek sausages and penicillin production by Penicillium isolates. Meat Sci 76(4):653–657.  https://doi.org/10.1016/j.meatsci.2007.01.018 CrossRefPubMedGoogle Scholar
  39. Perrone G, Mulè G, Susca A, Battilani P, Pietri A, Logrieco A (2006) Ochratoxin A production and amplified fragment length polymorphism analysis of Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger strains isolated from grapes in Italy. Appl Environ Microbiol 72(1):680–685.  https://doi.org/10.1128/AEM.72.1.680-685.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Perrone G, Samson RA, Frisvad JC, Susca A, Gunde-Cimerman N, Epifani F, Houbraken J (2015) Penicillium salamii, a new species occurring during seasoning of dry-cured meat. Int J Food Microbiol 193:91–98.  https://doi.org/10.1016/j.ijfoodmicro.2014.10.023 CrossRefPubMedGoogle Scholar
  41. Persi N, Pleadin J, Kovacevic D, Scortichini G, Milone S (2014) Ochratoxin A in raw materials and cooked meat products made from OTA-treated pigs. Meat Sci 96(1):203–210.  https://doi.org/10.1016/j.meatsci.2013.07.005 CrossRefPubMedGoogle Scholar
  42. Petr J, Rozinek J, Vanourková Z, Jílek F (1999) Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases, induces exit from metaphase I arrest in growing pig oocytes. Reprod Fertil Dev 11(5):235–246.  https://doi.org/10.1071/RD99043 CrossRefPubMedGoogle Scholar
  43. Pietri A, Bertuzzi T, Gualla A, Piva G (2006) Occurrence of ochratoxin a in raw ham muscles and in pork products from Northern Italy. Ital J Food Sci 18:99–106Google Scholar
  44. Pleadin J, Zadravec M, Brnić D, Perković I, Škrivanko M, Kovačević D (2016) Moulds and mycotoxins detected in the regional speciality fermented sausage ‘slavonski kulen’ during a 1-year production period. Food Addit Contam Part A 34:282–290Google Scholar
  45. Rodríguez A, Rodríguez M, Luque MI, Justesen AF, Córdoba JJ (2011) Quantification of ochratoxin A-producing molds in food products by SYBR Green and TaqMan real-time PCR methods. Int J Food Microbiol 149(3):226–235.  https://doi.org/10.1016/j.ijfoodmicro.2011.06.019 CrossRefPubMedGoogle Scholar
  46. Rodríguez A, Medina Á, Córdoba JJ, Magan N (2014) The influence of salt (NaCl) on ochratoxin A biosynthetic genes, growth and ochratoxin A production by three strains of Penicillium nordicum on a dry-cured ham-based medium. Int J Food Microbiol 178:113–119.  https://doi.org/10.1016/j.ijfoodmicro.2014.03.007 CrossRefPubMedGoogle Scholar
  47. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS Laboratory Manual Series 2. CBS-KNAW Fungal Biodiversity Centre, Utrecht (The Netherlands)Google Scholar
  48. Scaramuzza N, Diaferia C, Berni E (2015) Monitoring the mycobiota of three plants manufacturing Culatello (a typical Italian meat product). Int J Food Microbiol 203:78–85.  https://doi.org/10.1016/j.ijfoodmicro.2015.02.034 CrossRefPubMedGoogle Scholar
  49. US Food and Drug Administration (USFDA) (2000) Guidance for industry: action levels for poisonous or deleterious substances in human food and animal feed. https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ChemicalContaminantsMetalsNaturalToxinsPesticides/ucm077969.htm
  50. Varga J, Kevei E, Rinyu E, Téren J, Kozakiewicz Z (1996) Ochratoxin production by Aspergillus species. Appl Environ Microbiol 62:4461–4464PubMedPubMedCentralGoogle Scholar
  51. Vipotnik Z, Rodrigues A, Rodrigues P (2017) Aspergillus westerdijkiae as a major ochratoxin A risk in dry-cured ham based-media. Int J Food Microbiol 241:244–251.  https://doi.org/10.1016/j.ijfoodmicro.2016.10.031 CrossRefPubMedGoogle Scholar
  52. Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing F, Zhao Y, Liu Y (2016) Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins 8(3):83.  https://doi.org/10.3390/toxins8030083 CrossRefPubMedCentralGoogle Scholar
  53. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc, San Diego, California, pp 315–322Google Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”Sezione Diagnostica di PaviaPaviaItaly
  2. 2.Dipartimento di Scienze del Farmaco & Drug and Food Biotechnology (DFB) CenterUniversità del Piemonte Orientale “A. Avogadro”NovaraItaly
  3. 3.Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”Sezione Diagnostica di ForlìForlìItaly
  4. 4.Dipartimento di Scienze della Terra e dell’AmbienteUniversità di Pavia – Laboratorio di MicologiaPaviaItaly
  5. 5.Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini”Laboratorio Micotossine e TossicologiaBresciaItaly

Personalised recommendations