Depositional environments and landscapes of the upper Miocene Ipururo Formation at Shumanza, Subandean Zone, northern Peru

Abstract

During the late Miocene, the Andean–Amazonian region experienced drastic climatic and environmental changes, notably due to a major phase in the Andean uplift. The fossil record is virtually undocumented for this period in the Subandean Zone, where very few palaeoenvironmental and palaeontological investigations have been undertaken. Here, we describe plant remains (pollen, spores, and leaves), microfossils, mollusks, and vertebrates from the Ipururo Formation at Shumanza, San Martín, Peru. Twenty-nine plant families are identified from 164 pollen grains and 89 spores, among them Lycophytes, Monilophytes, and angiosperms (5 monocots and 18 eudicots). The pollen sample notably includes Grimsdalea magnaclavata, Palaeosantalaceaepites cingulatus, Echitricolporites spinosus, and Fenestrites longispinosus, pointing to a late Miocene–early Pliocene age for the TAR-27 locality (10.06–3.72 Ma). Leaf impressions, from nearby localities in the same section, document Malvaciphyllum sp. (Malvaceae), three morphs resembling Caryocaraceae, Fabaceae, Myrtaceae, and two unidentified ‘Dicotyledonae’ angiosperms. The mollusk assemblage is somewhat reminiscent of early–middle Miocene Pebasian faunas and dominated by gastropods (ampullariids, cochliopid, cerithioid, and planorbids). It also includes sphaeriid and unionoid bivalves. Vertebrate recovery is very poor, with a serrasalmine characiform and unidentified actinopterygian teeth. Fossil assemblages and sedimentary facies consistently testify to the dominance of riverine/alluvial forests and the persistence of a steady lowland rainforest close to the Andes less than 10.1 million years ago, without indication of (1) mangrove/marine environments or (2) high-elevation ranges in the close surroundings of Shumanza by that time. By coupling palynostratigraphy and lithostratigraphy, Shumanza fossil assemblages would be further assigned an early late Miocene age (10.1–ca. 8 Ma).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Antoine, P.-O., Abello, M. A., Adnet, S., Sierra, A. J. A., Baby, P., Billet, G., Boivin, M., Calderón, Y., Candela, A., Chabain, J., Corfu, F., Croft, D. A., Ganerød, M., Jaramillo, C., Klaus, S., Marivaux, L., Navarrete, R. E., Orliac, M. J., Parra, F., Pérez, M. E., Pujos, F., Rage, J.-C., Ravel, A., Robinet, C., Roddaz, M., Tejada-Lara, J. V., Vélez-Juarbe, J., Wesselingh, F. P., & Salas-Gismondi, R. (2016). A 60-million-year Cenozoic history of western Amazonian ecosystems in Contamana, eastern Peru. Gondwana Research, 31, 30–59.

    Google Scholar 

  2. Antoine, P.-O., Salas-Gismondi, R., Pujos, F., Ganerød, M., & Marivaux, L. (2017). Western Amazonia as a hotspot of mammalian biodiversity throughout the Cenozoic. Journal of Mammalian Evolution, 24, 5–17.

    Google Scholar 

  3. Armijo, R., Lacassin, R., Coudurier-Curveur, A., & Carrizo, D. (2015). Coupled tectonic evolution of Andean orogeny and global climate. Earth-Science Reviews, 143, 1–35.

    Google Scholar 

  4. Barreto, C. F., Neto, J. A. B., Vilela, C. G., & Barth, O. M. (2015). Palynological studies of Late Holocene Jurujuba sound sediments (Guanabara Bay), Rio de Janeiro, Southeast Brazil. Catena, 126, 20–27.

    Google Scholar 

  5. Batten, D. J. & Grenfell, H. R. (1996). Botryococcus. In J. Jansonius & D.C. McGregor (Eds.), Palynology: principles and applications (pp. 205–214), American Association of Stratigraphic Palynologists Foundation, 1.

  6. Bershaw, J., Garzione, C. N., Higgins, P., MacFadden, B., Anaya, F., & Alvarenga, H. (2010). Spatial–temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters, 289, 530–538.

    Google Scholar 

  7. Boonstra, M., Ramos, M. I. F., Lammertsma, E. I., Antoine, P.-O., & Hoorn, C. (2015). Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 176–194.

    Google Scholar 

  8. Campbell, K. E., Heizler, M., Frailey, C. D., Romero-Pittman, L., & Prothero, D. R. (2001). Upper Cenozoic chronostratigraphy of the southwestern Amazon Basin. Geology, 29, 595–598.

    Google Scholar 

  9. Carvalho, M. R., Herrera, F. A., Jaramillo, C. A., Wing, S. L., & Callejas, R. (2011). Paleocene Malvaceae from northern South America and their biogeographical implications. American Journal of Botany, 98, 1337–1355.

    Google Scholar 

  10. Cole, T. C. H., Bachelier, J. B., & Hilger, H. H. (2018). Tracheophytes phylogeny poster. Vascular plants: Systematics and characteristics. PeerJ Preprints, 7, e2614v3. https://doi.org/10.7287/peerj.preprints.2614v3/supp-1.

    Article  Google Scholar 

  11. Cole, T. C. H., Hilger, H. H., & Stevens, P. F. (2019). Angiosperm phylogeny poster. Flowering plant systematics. PeerJ Preprints, 7, e2320v5. https://doi.org/10.7287/peerj.preprints.2320v5/supp-1.

    Article  Google Scholar 

  12. Colinvaux, P. A., De Oliveira, P. E., & Moreno Patiño, J. E. M. (1999). Amazon Pollen Manual and Atlas-Manual e Atlas Palinológico da Amazônia (322 p). Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  13. D’Apolito, C. (2016). Landscape evolution in western Amazonia: Palynostratigraphy, palaeoenvironments and diversity of the Miocene Solimões Formation, Brazil. Unpublished PhD thesis, Univ. Birmingham, UK, 365 p.

  14. da Silva-Caminha, S. A., Jaramillo, C. A., & Absy, M. L. (2010). Neogene palynology of the Solimões basin, Brazilian Amazonia. Palaeontographica Abteilung B, 284, 13–79.

    Google Scholar 

  15. Ellis, B., Daly, D. C., Hickey, L. J., Mitchell, J. V., Johnson, K. R., Wilf, P., & Wing, S. L. (2009). Manual of leaf architecture. Ithaca, NY: Cornell University Press.

    Google Scholar 

  16. Eude, A., Roddaz, M., Brichau, S., Brusset, S., Calderon, Y., Baby, P., & Soula, J.-C. (2015). Controls on timing of exhumation and deformation in the northern Peruvian eastern Andean wedge as inferred from low-temperature thermochronology and balanced cross section. Tectonics, 34, 715–730.

    Google Scholar 

  17. Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37, 619–622.

    Google Scholar 

  18. Goillot, C. (2010). Biochronologie (vertébrés, pollen) et paléogéographie du bassin amazonien occidental au Miocène moyen. Unpublished PhD thesis, Univ. Toulouse, France, 250 p..

  19. Gorini, C., Haq, B. U., dos Reis, A. T., Silva, C. G., Cruz, A., Soares, E., & Grangeon, D. (2014). Late Neogene sequence stratigraphic evolution of the Foz do Amazonas Basin, Brazil. Terra Nova, 26, 179–185.

    Google Scholar 

  20. Graham, A. (2009). The Andes: A geological overview from a biological perspective. Annals of the Missouri Botanical Garden, 96(3), 371–385.

    Google Scholar 

  21. Graham, A., Gregory-Wodzicki, K. M., & Wright, K. L. (2001). Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: Implications for the uplift history of the Central Andes. American Journal of Botany, 88(9), 1545–1557.

    Google Scholar 

  22. Guy-Ohlson, D. (1992). Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Review of Paleobotany and Palynology, 71, 1–15.

    Google Scholar 

  23. Hammen, T. Van Der, & Hooghiemstra, H. (2000). Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews, 19, 725–742.

  24. Hermoza, W., Brusset, S., Baby, P., Gil, W., Roddaz, M., Guerrero, N., & Bolaños, R. (2005). The Huallaga foreland basin evolution: Thrust propagation in a deltaic environment, northern Peruvian Andes. Journal of South American Earth Sciences, 19, 21–34.

    Google Scholar 

  25. Herrera, L. F., & Urrego, L. E. (1996). Atlas de polen de plantas útiles y cultivadas de la Amazonia colombiana (pollen atlas of useful and cultivated plants in the Colombian Amazon region). In Estudios en la Amazonia Colombiana, 11 (462 p). Bogotá: Tropenbos-Colombia.

    Google Scholar 

  26. Hilgen, F. J., Lourens, L. J., & Van Dam, J. A. (2012). The Neogene period. In F. Gradstein, J. Ogg, M. Schmitz, & G. Ogg (Eds.), The geologic time scale 2012 (pp. 923–978). Boston: Elsevier.

    Google Scholar 

  27. Hooghiemstra, H. (1984). Vegetation and climatic history of the high plain of Bogota, Colombia: A continuous record of the last 3.5 million years. J. Cramer hardcover—A squared books (Don Dewhirst). Dissertationes Botanicae, 79, 368 p.

  28. Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 267–309.

    Google Scholar 

  29. Hoorn, M. C. (1994a). Miocene palynostratigraphy and palaeo-environments of northwestern Amazonia: Evidence for marine incursions and the influence of Andean tectonics. Unpublished PhD thesis in Palynology and Paleo/Actuo-ecology, University of Amsterdam, Amsterdam, 156 p.

  30. Hoorn, C. (1994b). An environmental reconstruction of the palaeo-Amazon river system (Middle–Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 187–238.

    Google Scholar 

  31. Hoorn, C. (2006). Mangrove forests and marine incursions in Neogene Amazonia (lower Apaporis River, Colombia). Palaios, 21, 197–209.

    Google Scholar 

  32. Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sánchez-Méseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.

    Google Scholar 

  33. Hoorn, C., Bogotá-A, G. R., Romero-Baez, M., Lammertsma, E. I., Flantua, S. G. A., Dantas, E. L., Dino, R., & do Carmo, D.A., & Chemale, F. Jr. (2017). The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change, 153, 51–65.

  34. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth-Science Reviews, 178, 279–309.

    Google Scholar 

  35. Hulka, C., & Heubeck, C. (2010). Composition and provenance history of late Cenozoic sediments in southeastern Bolivia: Implications for Chaco Foreland Basin evolution and Andean uplift. Journal of Sedimentary Research, 80, 288–299.

    Google Scholar 

  36. Jaramillo, C.A. & Rueda, M. (2016). A morphological electronic database of Cretaceous–Tertiary fossil pollen and spores from northern South America. Colombian Petroleum Institute & Smithsonian Tropical Research. Available at: http://biogeodb.stri.si.edu/jaramillo/palynomorph/

  37. Jaramillo, C., Hoorn, C., Silva, S. A. F., Leite, F., Herrera, F., Quiroz, L., Dino, R., & Antonioli, L. (2010). The origin of the modern Amazon rainforest: Implications of the palynological and palaeobotanical record. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 317–334). Hoboken: Wiley-Blackwell Publishing.

    Google Scholar 

  38. Jaramillo, C. A., Rueda, M., & Torres, V. (2011). A palynological zonation for the Cenozoic of the llanos and llanos foothills of Colombia. Palynology, 35, 46–84.

    Google Scholar 

  39. Jaramillo, C., Romero, I., Bayona, G., Duarte, E., Louwye, S., Escobar, J., Luque, J., Zapata, V., Mora, A., Schouten, S., Zavada, M., Harrington, G., Ortiz, J., & Wesselingh, F. P. (2017). Miocene flooding events of western Amazonia. Science Advances, 3, 1–12.

    Google Scholar 

  40. Kar, N., Garzione, C. N., Jaramillo, C., Shanahan, T., Carlotto, V., Pullen, A., Moreno, F., Anderson, V., Moreno, E., & Eiler, J. (2016). Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction. Earth and Planetary Science Letters, 447, 33–47.

    Google Scholar 

  41. Latrubesse, E. M., Cozzuol, M., da Silva-Caminha, S. A., Rigsby, C. A., Absy, M. L., & Jaramillo, C. (2010). The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews, 99, 99–124.

    Google Scholar 

  42. Leite, F.P.R. (2009). Palinogia da formação Solimões, neógeno da Bacia do Solimões, Estado do Amazonas, Brasil: implicações paleoambientais e bioestratigráficas. Unpublished thesis. 128 p. http://repositorio.unb.br/handle/10482/2475?mode=full.

  43. Lorente, M. (1986). Palynology and palynofacies of the Upper Tertiary in Venezuela (222 p). Berlin: J. Cramer.

  44. Lundberg, J. G., Sabaj Pérez, M. H., Dahdul, W. M., & Aguilera, O. A. (2010). The Amazonian Neogene fish fauna. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 281–301). Hoboken: Wiley-Blackwell Publishing.

    Google Scholar 

  45. Marchant, R., Almeida, L., Behling, H., Berrio, J. C., Bush, M., Cleef, A., Duivenvoorden, J., Kapelle, M., De Oliveira, P., Teixeira de Oliveira-Filho, A., Lozano-Garcia, S., Hooghiemstra, H., Ledru, M.-P., Ludlow-Wiechers, B., Markgraf, V., Mancini, V., Paez, M., Prieto, A., Rangel, O., & Salgado-Labouriau, M. L. (2002). Distribution and ecology of parent taxa of pollen lodged within the Latin American pollen database. Review of Palaeobotany and Palynology, 121, 1–75.

    Google Scholar 

  46. Medeanic, S. (2006). Freshwater algal palynomorph records from Holocene deposits in the coastal plain of Rio Grande do Sul, Brazil. Review of Palaeobotany and Palynology, 141, 83–101.

    Google Scholar 

  47. Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W., & Espurt, N. (2010). Tectonic history of the Andes and Subandean zones: Implications for the development of the Amazon drainage basin. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 38–60). Hoboken: Wiley-Blackwell Publishing.

  48. Negri, F. R., Bocquentin-Villanueva, J., Frerigolo, J., & Antoine, P.-O. (2010). A review of Tertiary mammal faunas and birds from western Amazonia. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 245–258). Hoboken: Wiley-Blackwell Publishing.

  49. Paleosedes, 2015. Bioestratigrafía mediante palinología. Muestras de superficie, Tarapoto (Perú, Suramérica). Unpublished Report, REP-1008-16-01-2015, pp. 1–5.

  50. Peppe, D. J., Hickey, L. J., Miller, I. M., & Green, W. A. (2008). A morphotype catalogue, floristic analysis and stratigraphic description of the Aspen shale flora (Cretaceous–Albian) of southwestern Wyoming. Bulletin of the Peabody Museum of Natural History, 49, 181–208.

    Google Scholar 

  51. Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143, 1–81.

    Google Scholar 

  52. Räsänen, M. E., Linna, A. M., Santos, J. C. R., & Negri, F. R. (1995). Late Miocene tidal deposits in the Amazonian foreland basin. Science, 269, 386–390.

    Google Scholar 

  53. Ribeiro, A. M., Madden, R. H., Negri, F. R., Kerber, L., Hsiou, A. S., & Rodrigues, K. A. (2013). Mamíferos fósiles y biocronología en el suroeste de la Amazonia, Brasil. In D. Brandoni & J. I. Noriega (Eds.), El Neógeno de la Mesopotamia Argentina (Asociación Paleontológica Argentina, Publicación Especial) (Vol. 14, pp. 207–221).

    Google Scholar 

  54. Riff, D., Romano, P. S. R., Oliveira, G. R., & Aguilera, O. A. (2010). Neogene crocodile and turtle fauna in northern South America. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 259–280). Hoboken: Wiley-Blackwell Publishing.

    Google Scholar 

  55. Roddaz, M., Viers, J., Brusset, S., Baby, P., & Hérail, G. (2005). Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin. Earth and Planetary Science Letters, 239, 57–78.

    Google Scholar 

  56. Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., Brusset, S., & Wesselingh, F. P. (2010). Cenozoic sedimentary evolution of the Amazonian foreland basin system. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 361–388). Hoboken: Wiley-Blackwell Publishing.

    Google Scholar 

  57. Roubik, D. W., & Moreno, P. (1991). Pollen and spores of Barro Colorado Island (Panama). Monographs in Systematic Botany, 36, 270 p.

  58. Salas-Gismondi, R., Flynn, J. J., Baby, P., Tejada-Lara, J. V., Wesselingh, F. P., & Antoine, P. O. (2015). A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20142490.

    Google Scholar 

  59. Sánchez Fernández, A. W., & Herrera Tufino, I. (1998). Geología de los cuadrángulos de Moyobamba, Saposoa y Juanjui. Hojas 13-j, 14-j y 15-j. Boletín del Instituto Geológico, Minero y Metalúrgico del Perú, A-122, 1–269.

    Google Scholar 

  60. Sánchez Izquierdo, J., Álvarez Cumpa, D., & Lagos Manrique, A. (1998). Geología de los cuadrángulos de Juscusbamba y Pólvora. Hojas 16-i y 16-j. Boletín del Instituto Geológico, Minero y Metalúrgico del Perú, A-119, 1–268.

    Google Scholar 

  61. Soelen, E. E. Van, Kim, J.-H., Santos, R. V., Dantas, E. L., Vasconcelos de Almeida, F., Pires, J. P., Roddaz, M., & Sinninghe Damsté, J. S. (2017). A 30 ma history of the Amazon River inferred from terrigenous sediments and organic matter on the Ceará rise. Earth and Planetary Science Letters, 474, 40–48

  62. Suc, J.-P., Fauquette, S. & Popescu, S. M. (2004). L'investigation palynologique du Cénozoïque passe par les herbiers. In Actes du Colloque “Les herbiers: un outil d'avenir. Tradition et modernité”, Villeurbanne. Edit. Association française pour la Conservation des Espèces Végétales, Nancy (pp. 67–87).

  63. Teunissen van Manen, M. (2015a). Miocene Amazonian Palynological Diversity—Image files. figshare. https://doi.org/10.6084/m9.figshare.1396453

  64. Teunissen van Manen, M. (2015b). Miocene Amazonian palynological diversity database—Entries record. figshare. https://doi.org/10.6084/m9.figshare.1396562

  65. Wesselingh, F. P., & Ramos, M. I. F. (2010). Amazonian aquatic invertebrate faunas (Mollusca, Ostracoda) and their development over the past 30 million years. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonian landscape and species evolution: A look into the past (pp. 302–316). Hoboken, Wiley-Blackwell Publishing.

  66. Wesselingh, F. P., Hoorn, M. C., Guerrero, J., Räsänen, M., Romero Pittmann, L., & Salo, J. (2006). The stratigraphy and regional structure of Miocene deposits in western Amazonia (Peru, Colombia and Brazil), with implications for late Neogene landscape evolution. Scripta Geologica, 133, 291–322.

    Google Scholar 

Download references

Acknowledgements

We deeply thank Marie-Pierre Ledru (ISEM, Montpellier) and Carina Hoorn (University of Amsterdam) for their invaluable help to identify the palynomorphs. We especially thank Laurent Marivaux, Myriam Boivin (ISEM), François Pujos (IANIGLA-CONICET, Mendoza), and especially Patrice Baby (GET, Toulouse) for their assistance in the field. Fieldwork was funded by the National Geographic Society and by French Connection Films, under an agreement between the Museo de Historia Natural de la Universidad Nacional de San Marcos, Lima, and the ISEM–University of Montpellier, France. This work was further funded by COOPINTEER CNRS/CONICET and ECOS-SUD/FONCyT international collaboration programs and through an “Investissements d’Avenir” grant managed by the “Agence Nationale de la Recherche” (CEBA, ANR-10-LABX-0025-01). A.F.T. was granted by the CEBA for his stay in the Institute for Biodiversity and Ecosystem Dynamics, Amsterdam University. C.M. acknowledges Harold E. Moore Jr. Memorial and Endowment Funds from Cornell University, and the doctoral fellowship of Fulbright-Colciencias. We warmly thank M. di Pasquo, D. Kadolsky, and a third anonymous referee who greatly helped us to improve previous versions of the manuscript. This is ISEM publication no. 2019-176 SUD.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierre-Olivier Antoine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or living animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tcheumeleu, A.F., Fauquette, S., Castillo, A.A. et al. Depositional environments and landscapes of the upper Miocene Ipururo Formation at Shumanza, Subandean Zone, northern Peru. Palaeobio Palaeoenv 100, 719–735 (2020). https://doi.org/10.1007/s12549-019-00400-8

Download citation

Keywords

  • Pebas mega-wetland system
  • Proto-Amazonia
  • Neotropical rainforest
  • Palynomorphs
  • Leaf impressions
  • Mollusks