Palaeobiodiversity and Palaeoenvironments

, Volume 99, Issue 2, pp 143–158 | Cite as

Fossil burrow assemblage, not mangrove roots: reinterpretation of the main whale-bearing layer in the late Eocene of Wadi Al-Hitan, Egypt

  • Carole T. GeeEmail author
  • P. Martin Sander
  • Shanan E. Peters
  • Mohamed Talaat El-Hennawy
  • Mohammed Sameh M. Antar
  • Iyad S. Zalmout
  • Philip D. Gingerich
Original Paper


The UNESCO World Heritage Site of Wadi Al-Hitan near Fayum in the Western Desert of Egypt is well-known for its remarkable abundance and diversity of late Eocene marine fossils, especially well-preserved cetaceans and sirenians. However, the taphonomy of the early Priabonian whales and sea cows is still not fully understood. These marine mammals often occur on specific horizons in the Birket Qarun Formation, for example, on a distinctive firmground called the Camp White Layer (CWL). Vertical, rod-like structures in the CWL were previously interpreted as “mangrove pneumatophores,” which have influenced hypotheses about the habitat of early whales. Here, we reexamine the rod-like structures of the CWL and show that they do not represent mangrove rooting structures based on an analysis of their morphology and an extensive comparison with rooting structures of living mangroves. Instead, the morphology of the rod-like structures indicates that they are trace fossils representing five size classes of marine invertebrate burrows, including burrows of weakly umbonate clams and Ophiomorphidae. The complex overprinting of all burrows toward the top of the CWL indicates stratigraphic condensation caused by low overall rates of sedimentation on a marine flooding surface in the transgressive systems tract. The large number of whale carcasses, abundant invertebrate skeletal remains, logs, marine invertebrate-encrusted celestine crystals, and an extensive, diverse burrow network reflect a combination of environmental and temporal condensation. A peculiar feature of the CWL, celestine crystal aggregates and gastropod celestine pseudomorphs, indicate an evaporative phase that is difficult to reconcile with the current sequence stratigraphic framework.


Priabonian Archaeoceti Ichnofossils Fossil mangrove pneumatophores Camp White Layer Celestine 



We are indebted to the park rangers and staff of the Wadi El-Rayan Protected Area for their able and tireless assistance, to the Egyptian Environmental Affairs Agency for encouraging and supporting our field studies, and to Georg Oleschinski (University of Bonn) for his assistance with Figs. 3d–g and 7a. We also thank reviewers Robert A. Gastaldo (Colby College, Maine, USA) and Michael R.W. Amler (Universität zu Köln, Germany) for helpful reviews.

Funding information

This research was conducted during the tenure of research funds from Deutsche Forschungsgemeinschaft FOR 533 to CTG and PMS. Field work was supported by the National Geographic Society grant 7226-04 and National Science Foundation grant EAR-0920972 to PDG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Abdel-Fattah, Z. A., Gingras, M. K., Caldwell, M. W., & Pemberton, S. G. (2010). Sedimentary environments and depositional characteristics of the Middle to Upper Eocene whale-bearing succession in the Fayum Depression, Egypt. Sedimentology, 57, 446–476.CrossRefGoogle Scholar
  2. Andrews, C. W. (1906). A descriptive catalogue of the Tertiary vertebrata of the Fayum, Egypt. London: British Museum (Natural History) 324 pp.Google Scholar
  3. Arab Republic of Egypt. (2004). Nomination file for the inscription of Wadi Al-Hitan (Whale Valley), the western desert of Egypt on the Natural World Heritage list. Accessed 8 February 2017.
  4. Beadnell, H. J. L. (1905). The topography and geology of the Fayum Province of Egypt. Cairo: Survey Department of Egypt 101 pp.Google Scholar
  5. Bebej, R. M., Zalmout, I. S., Abed El-Aziz, A. A., Antar, M. S., & Gingerich, P. D. (2016). First remingtonocetid archaeocete (Mammalia, Cetacea) from the middle Eocene of Egypt with implications for biogeography and locomotion in early cetacean evolution. Journal of Paleontology, 89, 882–893. Scholar
  6. Blanckenhorn, M. (1903). Neue geologisch-stratigraphische Beobachtungen in Aegypten. Sitzungsberichte der Mathematisch-physikalischen Classe der königlichen bayerischen Akademie der Wissenschaften. München, 32, 353–433.Google Scholar
  7. Bown, T. M., & Kraus, M. J. (1988). Geology and paleoenvironment of the Oligocene Jebel Qatrani Formation and adjacent rocks, Fayum Depression, Egypt. U.S. Geological Survey Professional Paper, 1452, 1–60.Google Scholar
  8. Dames, W. B. (1894). Über Zeuglodonten aus Aegypten und die Beziehungen der Archaeoceten zu den übrigen Cetaceen. Geologische und Paläontologische Abhandlungen, 5, 189–222.Google Scholar
  9. El-Saadawi, W. E. (2005). A fossil rhizome at the mangrove site of Wadi Hitan, Egypt. Taeckholmia, 25, 129–136.CrossRefGoogle Scholar
  10. Fraas, E. (1904). Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geologische und Paläontologische Abhandlungen, Neue Folge, 6, 197–220.Google Scholar
  11. Fraas, E. (1906). Wüstenreise eines Geologen in Ägypten. Kosmos, Handweiser für Naturfreunde, Stuttgart, 3, 263–269.Google Scholar
  12. Gastaldo, R. A., & Huc, A.-Y. (1992). Sediment facies, depositional environments, and distribution of phytoclasts in the Recent Mahakam River delta, Kalimantan, Indonesia. Palaios, 7, 574–590.CrossRefGoogle Scholar
  13. Gingerich, P. D. (1992). Marine mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: stratigraphy, age, and paleoenvironments. University of Michigan, Papers on Paleontology 30, 84 pp.Google Scholar
  14. Gingerich, P. D. (2007). Stromerius nidensis, new archaeocete (Mammalia, Cetacea) from the upper Eocene Qasr El-Sagha Formation, Fayum, Egypt. Contributions from the Museum of Paleontology, University of Michigan, 31, 363–378.Google Scholar
  15. Gingerich, P. D., Smith, B. H., & Simons, E. L. (1990). Hind limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science, 249, 154–157.CrossRefGoogle Scholar
  16. Gingerich, P. D., Abd-Elshafy, E., Metwally, H. M., Zalmout, I. S., & Antar, M. S. M. (2011). Paleoenvironmental and taphonomic assessment of Eocene marine faunas of Wadi Al-Hitan and Siwa areas, Egypt. Egyptian Journal of Paleontology, 11, 171–190.Google Scholar
  17. Gingerich, P. D., Zalmout, I. S., Antar, M. S. M., Williams, E. M., Carlson, A. E., Kelly, D. C., & Peters, S. E. (2012). Large-scale glaciation and deglaciation of Antarctica during the late Eocene: reply. Geology, 40, e255.CrossRefGoogle Scholar
  18. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.CrossRefGoogle Scholar
  19. Hardenbol, J., Jacques, T., Martin, F. B., Pierre-Charles, G., & Vail, P. R. (1998). Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. Society for Sedimentary Geology Special Publication, 60, 3–13.Google Scholar
  20. Mosbrugger, V., Gee, C. T., Belz, G., & Ashraf, A. R. (1994). Three-dimensional reconstruction of an in situ Miocene peat forest from the Lower Rhine Embayment, NW Germany—new methods in palaeovegetation analysis. Palaegeography, Palaeoclimatology, Palaeoecology, 10, 295–317.CrossRefGoogle Scholar
  21. Owen, R. (1875). On fossil evidences of a sirenian mammal (Eorherium aegyptiacum) from the nummulitic Eocene of the Mokattam cliffs, near Cairo. Quarterly Journal of the Geological Society of London, 31, 100–105.CrossRefGoogle Scholar
  22. Peters, S. E., Antar, M. S. M., Zalmout, I. S., & Gingerich, P. D. (2009). Sequence stratigraphic control on preservation of late Eocene whales and other invertebrates at Wadi Al-Hitan, Egypt. Palaios, 24, 290–302.CrossRefGoogle Scholar
  23. Peters, S. E., Carlson, A. E., Kelly, D. C., & Gingerich, P. D. (2010). Large-scale glaciation and deglaciation of Antarctica during the Late Eocene. Geology, 38, 723–726.CrossRefGoogle Scholar
  24. Salem, R. (1976). Evolution of Eocene–Miocene sedimentation patterns in parts of northern Egypt. AAPG Bulletin, 60, 34–64.Google Scholar
  25. Schweinfurt, G. A. (1886). Reise in das Depressionsgebiet im Umkreise des Fajum im Januar 1886. Zeitschrift der Gesellschafi fir Erdkurde zu Berlin, 21, 96–149.Google Scholar
  26. Seilacher, A. (2007). Trace fossil analysis. Berlin: Springer Verlag 226 pp.Google Scholar
  27. Stromer, E. (1903). Zeuglodon-Reste aus dem oberen Mitteleocän des Fajum. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, Wien, 15, 65–100.Google Scholar
  28. Stromer, E. (1908). Die Archaeoceti des ägyptischen Eozäns. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, Wien, 21, 106–178.Google Scholar
  29. Strougo, A. (2008). The Mokattamian stage: 125 years later. Middle East Research Center, Ain Shams University, Cairo, Earth Science Series, 22, 47–108.Google Scholar
  30. Strougo, A., Faris, M., Haggag, M. A. Y., Abul-Nasr, R. A., & Gingerich, P. D. (2013). Planktonic foraminifera and calcareous nannofossil biostratigraphy through the middle to late Eocene transition at Wadi Hitan, Fayum Province, Egypt. Contributions from the Museum of Paleontology, University of Michigan, 32, 111–138.Google Scholar
  31. Tomlinson, P. B. (2016). The botany of mangroves (2nd ed.). Cambridge: Cambridge University Press 454 pp.CrossRefGoogle Scholar
  32. Uhen, M. D. (2004). Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the middle to late Eocene of Egypt. University of Michigan Papers on Paleontology, 34, 1–222.Google Scholar
  33. Vondra, C. F. (1974). Upper Eocene transitional and nearshore marine Qasr el Sagha Formation, Fayum Depression, Egypt. Annals of the Geological Survey of Egypt, 4, 79–94.Google Scholar
  34. Zalmout, I. S., & Gingerich, P. D. (2012). Late Eocene sea cows (Mammalia, Sirenia) from Wadi Al Hitan in the Western Desert of Fayum, Egypt. University of Michigan Papers on Paleontology, 37, 1–158.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Steinmann Institute of Geology, Mineralogy, and Paleontology, Division of PaleontologyUniversity of BonnBonnGermany
  2. 2.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Egyptian Environmental Affairs AgencyCairoEgypt
  4. 4.Nature Conservation SectorWadi Al-Hitan World Heritage SiteAl-FayoumEgypt
  5. 5.Paleontology Unit, Department of Sedimentary Rocks and PaleontologySaudi Geological SurveyJeddahSaudi Arabia
  6. 6.Museum of Paleontology and Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations