pp 1–17 | Cite as

Naiadita lanceolata (Marchantiophyta) from the Middle Triassic (Ladinian) of Germany: a new reconstruction attempt and considerations on taphonomy

  • Klaus-Peter KelberEmail author
Research Paper


The fossil liverwort Naiadita lanceolata is described here from lacustrine deposits occurring intercalated in the Albertibank complex of the Lower Keuper, Erfurt Formation (Ladinian, Middle Triassic) of Schleerieth, northern Bavaria, Germany. The specimens represent the stratigraphically oldest records of this taxon so far. Leafy gametophytic plants are preserved as impression-compression fossils and include four specimens also showing the terminal or subterminal sporophyte in situ, as well as four leafy stems bearing conical gemma cups with lobed margins. Based on the new material, a refined reconstruction of N. lanceolata is proposed. The new found specimens also shed light on some plant taphonomic processes. The monospecific N. lanceolata assemblages comprise mostly leafy gametophytic stems, often still showing the three-dimensional orientation of the foliage. Another peculiar characteristic is the mass accumulation of isolated sporophyte capsules, which are partially surrounded by perianth leaves, probably a useful propagule mechanism for the cleistocarpous capsules.


Naiadita Marchantiophyta Fossil bryophyte Plant taphonomy Keuper Albertibank Germanotype Triassic 



I would like to thank Jürgen Sell, Museum Terra Triassica, Euerdorf, Germany, whose diligent fossil collecting has made this study possible. Many thanks to Gerd Geyer, Institute of Geography and Geology, University of Würzburg, for taking the photographs in Fig. 2b, c. I am also grateful to Gerd Vogg, Botanical Garden and Department of Botany 2, Julius-von-Sachs-Institute for Bioscience, University of Würzburg, who granted access to the photomicroscope. This manuscript was greatly improved by reviews from Benjamin Bomfleur, Michael Krings, Mihai Tomescu, an anonymous reviewer and the Editor-in-chief Mike Reich.


  1. Anderson, H.M. 1976. A review of the Bryophyta from the upper Triassic Molteno Formation, Karoo Basin, South Africa. Palaeontologia Africana 19: 21–30.Google Scholar
  2. Ash, A.W., B. Ellis, L.J. Hickey, K.R. Johnson, P. Wilf, and S.L. Wing. 1999. Manual of leaf architecture: morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms, 1–64. Washington, D.C.: Smithsonian Institution.Google Scholar
  3. Bateman, R.M., and J. Hilton. 2009. Palaeobotanical systematics for the phylogenetic age: applying organ-species, form-species and phylogenetic species concepts in a framework of reconstructed fossil and extant whole-plants. Taxon 58: 1254–1280.CrossRefGoogle Scholar
  4. Bippus, A., R.A. Stockey, G.W. Rothwell, and A.M.F. Tomescu. 2017. Extending the fossil record of Polytrichaceae: early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island. American Journal of Botany 104: 584–597.CrossRefGoogle Scholar
  5. Birks, H.H. 1980. Plant macrofossils in Quaternary lake sediments. In Ergebnisse der Limnologie, eds. H.J. Elster, and W. Ohle. Archiv für Hydrobiologie, Beihefte 15: 1–60.Google Scholar
  6. Bomfleur, B., A.A. Klymiuk, E.L. Taylor, T.N. Taylor, E.L. Gulbranson, and J.B. Isbell. 2014. Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47: 120–132.CrossRefGoogle Scholar
  7. Böttcher, R. 2015. 8 Fische des Lettenkeupers. In Der Lettenkeuper—Ein Fenster in die Zeit vor den Dinosauriern, eds. H. Hagdorn, R. Schoch, and G. Schweigert, 141–202. Stuttgart: Staatliches Museum für Naturkunde Stuttgart. (Palaeodiversity Supplement).Google Scholar
  8. Brauckmann, C., and T. Schlüter. 1993. Neue Insekten aus der Trias von Unter-Franken. Geologica et Palaeontologica 27: 181–199.Google Scholar
  9. Brodie, P.B. 1845. A history of fossil insects in the secondary rocks of England. London: J. Van Voorst.Google Scholar
  10. Bryant, J., and L. Irvine. 2016. Marimo, Cladophora, Posidonia and other plant balls. The Linnean 32: 11–14.Google Scholar
  11. Buckman, J. 1850. On some fossil plants from the Lower Lias. The Quarterly Journal of the Geological Society 6: 413–418.CrossRefGoogle Scholar
  12. Cannon, J.F.M. 1979. An experimental investigation of Posidonia balls. Aquatic Botany 6: 407–410.CrossRefGoogle Scholar
  13. Chaloner, B.W. 1999. Plant and spore compression in sediments. In Fossil plants and spores: modern techniques, eds. T.P. Jones and N.P. Rowe, 36–40. London: Geological Society.Google Scholar
  14. Collinson, M.E. 1983. Accumulations of fruits and seeds in three small sedimentary environments in southern England and their palaeoecological implications. Annals of Botany 52: 583–592.CrossRefGoogle Scholar
  15. Collinson, M.E. 1988. Freshwater macrophytes in palaeolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 317–342.CrossRefGoogle Scholar
  16. Cooke, J., R. Lanfear, A. Downing, and M.R. Gillings. 2015. The unusual occurrence of green algal balls of Chaetomorpha linum on a beach in Sydney, Australia. Botanica Marina 58: 401–407.CrossRefGoogle Scholar
  17. Djamali, M., H. Kürschner, H. Akhani, J.-L. de Beaulieu, A. Amini, V. Andrieu-Ponel, P. Ponel, and L. Stevens. 2008. Palaeoecological significance of the spores of the liverwort Riella (Riellaceae) in a late Pleistocene long pollen record from the hypersaline Lake Urmia, NW Iran. Review of Palaeobotany and Palynology 152: 66–73.CrossRefGoogle Scholar
  18. Espinar, J.L., and L. Clemente. 2007. The impact of vertic soil cracks on submerged macrophyte diaspore bank depth distribution in Mediterranean temporary ponds. Aquatic Botany 87: 325–328.CrossRefGoogle Scholar
  19. Etzold, A., and V. Schweizer. 2005. Der Keuper in Baden-Württemberg. In Deutsche Stratigraphische Kommision: Stratigraphie von Deutschland IV. Keuper, eds. G. Beutler, N. Hauschke, E. Nitsch, and U. Vath. Courier Forschungsinstitut Senckenberg 253: 215–258.Google Scholar
  20. Ferguson, D.K. 1985. The origin of leaf-assemblages—new light on an old problem. Review of Palaeobotany and Palynology 46: 117–188.CrossRefGoogle Scholar
  21. Frahm, J.-P. 2001. Biologie der Moose. Heidelberg and Berlin: Spektrum Akademischer Verlag.CrossRefGoogle Scholar
  22. Frahm, J. 2008. Diversity, dispersal and biogeography of bryophytes (mosses). Diversity and Conservation 17: 277–284.CrossRefGoogle Scholar
  23. Frey, W., and M. Stech. 2005. A morpho-molecular classification of the liverworts (Hepaticophytina, Bryophyta). Nova Hedwigia 81: 55–78.CrossRefGoogle Scholar
  24. Gastaldo, R.A. 1988. Conspectus of phytotaphonomy. In Methods and applications of plant paleoecology, eds. W.A. DiMichele and S.L. Wing. Paleontological Society, Special Publication 3: 14–28.Google Scholar
  25. Gee, G.T. 2005. The genesis of mass carpological deposits (bedload carpodeposits) in the Tertiary of the Lower Rhine Basin, Germany. Palaios 20: 463–478.CrossRefGoogle Scholar
  26. Geyer, G., and K.-P. Kelber. 1987. Flügelreste und Lebensspuren von Insekten aus dem Unteren Keuper Mainfrankens. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 174: 331–355.Google Scholar
  27. Glime, J.M. 2011. Ecological and physiological effects of changing climate on aquatic bryophytes. In Bryophyte ecology and climate change, eds. Z. Tuba, N.G. Slack, and L.R. Stark, 93–114. Cambridge: Cambridge University Press.Google Scholar
  28. Glime, J.M. 2013. Chapter 4–5. Adaptive strategies: growth and life forms. In Bryophyte ecology, volume 1: Physiological ecology. ed. Glime J.M., 1–21. Michigan: Michigan Technological University and the International Association of Bryologists.Google Scholar
  29. Glime, J.M. 2017a. Chapter 4–9. Adaptive Strategies: Spore Dispersal Vectors. In Bryophyte ecology, volume 1: Physiological ecology. ed. Glime J.M., 1–44. Michigan: Michigan Technological University and the International Association of Bryologists.Google Scholar
  30. Glime, J.M. 2017b. Chapter 13. Decomposition. In Bryophyte ecology, volume 1: Physiological ecology. ed. Glime J.M., 1–19. Michigan: Michigan Technological University and the International Association of Bryologists.Google Scholar
  31. Goffinet, B., W.R. Buck, and A.J. Shaw. 2009. Morphology, anatomy, and classification of the Bryophyta. In Bryophyte Biology, 2nd ed., eds. B. Goffinet and A.J. Shaw, 55–138. Cambridge: Cambridge University Press.Google Scholar
  32. Gothan, W., and H. Weyland. 1964. Lehrbuch der Paläobotanik. Berlin: Akademie-Verlag.Google Scholar
  33. Greenwood, D.R. 1991. The taphonomy of plant macrofossils. In The processes of fossilization, ed. S.K. Donovan, 141–169. New York, N.Y.: Columbia University Press.Google Scholar
  34. Hagdorn, H., and R.J. Mutter. 2011. The vertebrate fauna of the Lower Keuper Albertibank (Erfurt Formation, Middle Triassic) in the vicinity of Schwäbisch Hall (Baden-Württemberg, Germany). Palaeodiversity 4: 223–243.Google Scholar
  35. Hagdorn, H., K.P. Kelber, and R. Schoch. 2015a. Fossile Lebensgemeinschaften im Lettenkeuper. In Der Lettenkeupe—Ein Fenster in die Zeit vor den Dinosauriern, eds. H. Hagdorn, R. Schoch, and G. Schweigert, 359–385. Stuttgart: Staatliches Museum für Naturkunde Stuttgart. (Palaeodiversity Supplement).Google Scholar
  36. Hagdorn, H., R. Schoch, D. Seegis, and R. Werneburg. 2015b. Wirbeltierlagerstätten im Lettenkeuper. In Der Lettenkeuper—Ein Fenster in die Zeit vor den Dinosauriern, eds. H. Hagdorn, R. Schoch, and G. Schweigert, 325–358. Stuttgart: Staatliches Museum für Naturkunde Stuttgart. (Palaeodiversity Supplement).Google Scholar
  37. Harris, T.M. 1938. The British Rhaetic Flora. London: The British Museum. (Natural History).CrossRefGoogle Scholar
  38. Harris, T.M. 1939. Naiadita, a fossil bryophyte with reproductive organs. Annales Bryologici 12: 57–70.Google Scholar
  39. Heinrichs, J., J. Hentschel, R. Wilson, K. Feldberg, and H. Schneider. 2007. Evolution of leafy liverworts (Jungermannniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon 56: 31–44.Google Scholar
  40. Heinrichs, J., M.E. Reiner-Drehwald, K. Feldberg, D.A. Grimaldi, P.C. Nascimbene, M. von Konrat, and A.R. Schmidt. 2011. Kaolakia borealis nov. gen. et sp. (Porellales, Jungermanniopsida): a leafy liverwort from the Cretaceous of Alaska. Review of Palaeobotany and Palynology 165: 235–240.CrossRefGoogle Scholar
  41. Hemsley, A.R. 1989. The ultrastructure of the spore wall of the Triassic bryophyte Nadiadita lanceolata. Review of Palaeobotany and Palynology 61: 89–99.CrossRefGoogle Scholar
  42. Hemsley, A.R. 2001. Comparison of in vitro decomposition of bryophytic and tracheophytic plant material. Botanical Journal of the Linnean Society 137: 375–384.CrossRefGoogle Scholar
  43. Hoffmann, U. 1967. Erläuterungen zur Geologischen Karte von Bayern 1: 25000 Würzburg Nord Blatt Nr. 6125 Würzburg Nord, 1–94. München: Bayerisches Geologisches Landesamt.Google Scholar
  44. Hübers, M., and H. Kerp. 2013. Dispersed plant mesofossils from the Middle Mississippian of eastern Germany: bryophytes, pteridophytes and gymnosperms. Botanical Journal of the Linnean Society 193: 38–56.Google Scholar
  45. Ignatov, M.S. 1990. Upper Permian mosses from the Russian Platform. Palaeontographica (B) 217: 147–189.Google Scholar
  46. Katagiri, T., and A. Hagborg. 2015. Validation of ordinal and family names for a Triassic fossil liverwort, Naiadita (Naiaditaceae, Marchantiopsida). Phytotaxa 222: 165–166.CrossRefGoogle Scholar
  47. Kelber, K.-P. 1988. Was ist Equisetites foveolatus?. Gesellschaft für Naturkunde in Württemberg, Sonderbände 1: 166–184.Google Scholar
  48. Kelber, K.-P. 1990. Die versunkene Pflanzenwelt aus den Deltasümpfen Mainfrankens vor 230 Millionen Jahren. Beringeria, Sonderhefte 1: 1–67.Google Scholar
  49. Kelber, K.-P., and W. Hansch. 1995. Keuperpflanzen. Die Enträtselung einer über 200 Millionen Jahre alten Flora. Museo 11: 1–157.Google Scholar
  50. Kelber, K.-P. 2015. Die Makroflora des Lettenkeupers. In Der Lettenkeuper—Ein Fenster in die Zeit vor den Dinosauriern, eds. H. Hagdorn, R. Schoch, and G. Schweigert, 51–100. Stuttgart: Staatliches Museum für Naturkunde Stuttgart. (Palaeodiversity Supplement).Google Scholar
  51. Konijnenburg-van Cittert, J.H.A. van. 2008. The Jurassic fossil plant record of the UK area. Proceedings of the Geologists' Association 119: 59–72.CrossRefGoogle Scholar
  52. Krassilov, V.A., and R.M. Schuster. 1984. Paleozoic and mesozoic fossils. In New manual of bryology, vol. 2, ed. R.M. Schuster, 1172–1193. Nichinan: The Hattori Botanical Laboratory.Google Scholar
  53. Krassilov, V.A. 1987. Palaeobotany of the Mesophyticum: state of the art. Review of Palaeobotany and Palynology 50: 231–254.CrossRefGoogle Scholar
  54. Kumar, A. 2014. Origin and distribution of “Beach Balls” (Egagropili) of Brega, Libya, “Kedron Balls” of New Brunswick, Canada, and Carboniferous “Coal Balls”. Earth Science India, Popular Issue 7: 1–12.Google Scholar
  55. Kustatscher, E., Ash, S., Karasev, E., Pott, C., Vajda, V., Yu, J., and McLoughlin, S. 2017. Flora of the Late Triassic. In The Late Triassic World. ed. L.H. Tanner. Topics in Geobiology 46: 545–622.Google Scholar
  56. Locatelli, E.R. 2014. The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record. The Paleontological Society Papers 20: 237–258.CrossRefGoogle Scholar
  57. Malcom, B., and N. Malcolm. 2006. Mosses and other bryophytes—an illustrated glossary, 2nd ed. Nelson: Micro-Optic Press.Google Scholar
  58. Martín-Closas, C. 2003. The fossil record and evolution of freshwater plants: a review. Geologica Acta 1: 315–338.Google Scholar
  59. Mathieson, A.C., and C.J. Dawes. 2002. Chaetomorpha balls foul New Hampshire, U.S.A. beaches. Algae 17: 283–292.CrossRefGoogle Scholar
  60. Moisan, P., S. Voigt, J.W. Schneider, and H. Kerp. 2012. New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan). Review of Palaeobotany and Palynology 187: 29–37.CrossRefGoogle Scholar
  61. Nitsch, E. 2015. Fazies und Ablagerungsräume des Lettenkeupers. In Der Lettenkeuper—Ein Fenster in die Zeit vor den Dinosauriern, eds. H. Hagdorn, R. Schoch, and G. Schweigert, 285–324. Stuttgart: Staatliches Museum für Naturkunde Stuttgart. (Palaeodiversity Supplement).Google Scholar
  62. Olson, R.W., J.K. Schmutz, and U.T. Hammer. 2005. Occurrence, composition and formation of Ruppia, Widgeon Grass, balls in Saskatchewan Lakes. Canadian Field-Naturalist 119: 114–117.CrossRefGoogle Scholar
  63. Oostendorp, C. 1987. The bryophytes of the Palaeozoic and the Mesozoic. Bryophytorum Bibliotheca 34: 1–112.Google Scholar
  64. Pant, D.D., and N. Bhowmik. 1998. Fossil bryophytes—with special reference to Gondwanaland forms. In Topics in bryology, ed. R. Chopra, 1–52. New Delhi: Allied Publishers Limited.Google Scholar
  65. Pietrelli, L., A. Di Gennaro, P. Menegoni, F. Lecce, G. Poeta, A.T.R. Acosta, C. Battisti, and V. Iannilli. 2017. Pervasive plastisphere: first record of plastics in egagropiles (Posidonia spheroids). Environmental Pollution 229: 1032–1036.CrossRefGoogle Scholar
  66. Pöppelreiter, M. 1999. Controls on epeiric successions exemplified with the mixed siliciclastic—carbonate Lower Keuper (Ladinian, Germanic basin). Tübinger Geowissenschaftliche Arbeiten (A) 51: 1–126.Google Scholar
  67. Proctor, V.W. 1961. Dispersal of Riella spores by waterfowl. Bryologist 64: 58–61.CrossRefGoogle Scholar
  68. Rex, G.M., and W.G. Chaloner. 1983. The experimental formation of plant compression fossils. Palaeontology 26: 231–252.Google Scholar
  69. Rich, F. 1989. A review of the taphonomy of plant remains in lacustrine sediments. Review of Palaeobotany and Palynology 58: 33–46.CrossRefGoogle Scholar
  70. Rowe, N.P., and T.P. Jones. 1999. Locating and collecting. In Fossil plants and spores: modern techniques, eds. T.P. Jones and N.P. Rowe, 5–8. London: Geological Society.Google Scholar
  71. Schofield, W.B. 1985. Introduction to bryology, 1–431. Caldwell, N.J.: The Blackburn Press.Google Scholar
  72. Schuster, R.M. 1966. The Hepaticae and Anthocerotae of North America, east of the hundreth meridian. Volume 1, 1–802. New York, N.Y.: Columbia University Press.Google Scholar
  73. Schuster, R.M. 1981. Paleoecology, origin, distribution through time, and evolution of Hepaticae and Anthocerotae. In Palaeobotany, paleoecology, and evolution, vol. 2, ed. K.J. Niklas, 129–191. New York, N.Y.: Praeger.Google Scholar
  74. Schuster, R.M. 1984. Evolution, phylogeny and classification of the Hepaticae. In New Manual of Bryology, vol. 2, ed. R.M. Schuster, 892–1017. Nichinan: The Hattori Botanical Laboratory.Google Scholar
  75. Scott, A.C., and M. Collinson. 1983. Investigating fossil plant beds. Part 1: the origin of fossil plants and their sediments. Geology teaching 7: 114–122.Google Scholar
  76. Sollas, I.B.J. 1901. Fossils in the Oxford University Museum, V: on the structure and affinities of the Rhaetic plant Naiadita. The Quarterly Journal of the Geological Society London 57: 307–312.CrossRefGoogle Scholar
  77. Spicer, R.A. 1991. Plant taphonomic processes. In Taphonomy. Releasing the data locked in the fossil record, eds. P.A. Allison and D.E.F. Briggs, 71–113. New York, N.Y.: Plenum Press.Google Scholar
  78. Stewart, W.N. 1983. Paleobotany and the evolution of plants. New York, N.Y.: Cambridge University Press.Google Scholar
  79. Taylor, T.N., and E.L. Taylor. 1993. The biology and evolution of fossil plants. Englewood Cliffs: Prentice Hall.Google Scholar
  80. Taylor, T.N., E.L. Taylor, and M. Krings. 2009. Paleobotany—the biology and evolution of fossil plants. Burlington: Academic Press Inc.Google Scholar
  81. Thomas, B.A., C.J. Cleal, and M. Bartel. 2004. Palaeobotanical applications of incident light darkfield microscopy. Palaeontology 47: 1641–1645.CrossRefGoogle Scholar
  82. Tomescu, A.M.F., B. Bomfleur, A.C. Bippus, and A. Savoretti. 2018. Why are bryophytes so rare in the fossil record? a spotlight on taphonomy and fossil preservation. In Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor, eds. M. Krings, C.J. Harper, N.R. Cúneo, and G.W. Rothwell, 375–416. London: Academic Press.Google Scholar
  83. Townrow, J.A. 1959. Two Triassic bryophytes from South Africa. Journal of South African Botany 25: 1–22.Google Scholar
  84. Tsutsui, I., T. Miyoshi, H. Sukchai, P. Pinphoo, D. Aue-umneoy, C. Meeanan, J. Songphatkaew, S. Klomkling, I. Yamaguchi, M. Ganmanee, H. Sudo, and K. Hamano. 2015. Ecological and morphological profile of floating spherical Cladophora socialis aggregations in central Thailand. PLoS One 10: e0124997. Scholar
  85. Vanderpoorten, A., and B. Goffinet. 2009. Introduction to bryophytes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  86. Verhille, G., Moulinet, S., Vandenberghe, N., Adda-Bedia, M., and Le Gal, P. 2017. Structure and mechanics of aegagropilae fiber network. Proceedings of the National Academy of Sciences, U.S.A. 114: 4607–4612.Google Scholar
  87. Villarreal, A.J.C., B.J. Crandall-Stotler, M.L. Hart, D.G. Long, and L.L. Forrest. 2015. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytologist 209: 1734–1746.CrossRefGoogle Scholar
  88. Watson, E.V. 1971. The structure and life of bryophytes, 3rd ed. London: Hutchinson and Co.Google Scholar
  89. Wilde, V., and Heunisch, C. 1990. Auftreten und Erhaltung von Moosen im Mesozoikum (Keuper und Wealden) Nordwestdeutschlands. In 60. Jahrestagung der Paläontologischen Gesellschaft 1990, ed. Anonymous. Nachrichten der Deutschen Geologischen Gesellschaft 43: 155.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  1. 1.Department of Geodynamics and Geomaterials ResearchInstitute of Geography and Geology, University of WürzburgWürzburgGermany

Personalised recommendations