Adaptive Nonsingular Fast Terminal Sliding mode Control of Robotic Manipulator Based Neural Network Approach

Abstract

The paper addresses an adaptive robust position control for tracking control of a manipulator under the presence of the uncertainties, such as variant payload, modeling error, friction, and external disturbance. The proposed control uses radial basis function neural networks (RBFNN)s to approximate and cancel the uncertainties. The nonsingular fast terminal sliding mode control (NFTSMC) of the proposed control is developed to guarantees a finite-time convergence and to solve the singular issue of the terminal sliding mode control. Moreover, the learning laws are derived from the Lyapunov approach to ensure the stability and robustness of the whole system. The proposed control is compared with other controllers through both simulations and experiments on a 3-DOF manipulator to exhibit its efficiency with the variant payload and the uncertainties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kazerooni, H., Bausch, J. J., & Kramer, B. M. (1986). An approach to automated deburring by robot manipulators. Journal of Dynamic Systems, Measurement, and Control, 108(4), 354–359.

    Article  Google Scholar 

  2. 2.

    Lee, W.-Y., & Shih, C.-L. (2006). Control and breakthrough detection of a three-axis robotic bone drilling system. Mechatronics, 16(2), 73–84.

    Article  Google Scholar 

  3. 3.

    Kim, S., Shukla, A., & Billard, A. (2014). Catching objects in flight. IEEE Transactions on Robotics, 30(5), 1049–1065.

    Article  Google Scholar 

  4. 4.

    Muradore, R., & Fiorini, P. (2012). A PLS-based statistical approach for fault detection and isolation of robotic manipulators. IEEE Transactions on Industrial Electronics, 59(8), 3167–3175.

    Article  Google Scholar 

  5. 5.

    Nikdel, N., Badamchizadeh, M. A., Azimirad, V., & Nazari, M. A. (2017). Adaptive backstepping control for an n-degree of freedom robotic manipulator based on combined state augmentation. Robotics and Computer-Integrated Manufacturing, 44, 129–143.

    Article  Google Scholar 

  6. 6.

    Lee, J., Chang, P. H., & Jin, M. (2017). Adaptive integral sliding mode control with time-delay estimation for robot manipulators. IEEE Transactions on Industrial Electronics, 64(8), 6796–6804.

    Article  Google Scholar 

  7. 7.

    Tuan, L. A., Joo, Y. H., Tien, L. Q., & Duong, P. X. (2017). Adaptive neural network second-order sliding mode control of dual arm robots. International Journal of Control, Automation and Systems, 15(6), 2883–2891.

    Article  Google Scholar 

  8. 8.

    Jeong, C.-S., Kim, J.-S., & Han, S.-I. (2018). Tracking error constrained super-twisting sliding mode control for robotic systems. International Journal of Control, Automation and Systems, 16(2), 804–814.

    Article  Google Scholar 

  9. 9.

    He, W., Amoateng, D. O., Yang, C., & Gong, D. (2017). Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis. IET Control Theory & Applications, 11(4), 567–575.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Bae, H.-J., Jin, M., Suh, J., Lee, J. Y., Chang, P.-H., & Ahn, D. (2017). Control of robot manipulators using time-delay estimation and fuzzy logic systems. Journal of Electrical Engineering & Technology, 12(3), 1271–1279.

    Article  Google Scholar 

  11. 11.

    Ahn, K. K., & Anh, H. P. H. (2009). Design and implementation of an adaptive recurrent neural networks (ARNN) controller of the pneumatic artificial muscle (PAM) manipulator. Mechatronics, 19(6), 816–828.

    Article  Google Scholar 

  12. 12.

    Kim, N.-I., Lee, C.-W., & Chang, P.-H. (1998). Sliding mode control with perturbation estimation: application to motion control of parallel manipulator. Control Engineering Practice, 6(11), 1321–1330.

    Article  Google Scholar 

  13. 13.

    Yuzheng, G., & Peng-Yung, W. (2003). An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 33(2), 149–159.

    Article  Google Scholar 

  14. 14.

    Islam, S., Liu, P. X., & El Saddik, A. (2017). Nonlinear robust adaptive sliding mode control design for miniature unmanned multirotor aerial vehicle. International Journal of Control, Automation and Systems, 15(4), 1661–1668.

    Article  Google Scholar 

  15. 15.

    Ho, T. H., & Ahn, K. K. (2012). Speed control of a hydraulic pressure coupling drive using an adaptive fuzzy sliding-mode control. IEEE/ASME Transactions on Mechatronics, 17(5), 976–986.

    Article  Google Scholar 

  16. 16.

    Do, H. T., & Ahn, K. K. (2013). Velocity control of a secondary controlled closed-loop hydrostatic transmission system using an adaptive fuzzy sliding mode controller. Journal of Mechanical Science and Technology, 27(3), 875–884.

    Article  Google Scholar 

  17. 17.

    Lee, J., Jin, M., & Ahn, K. K. (2013). Precise tracking control of shape memory alloy actuator systems using hyperbolic tangential sliding mode control with time delay estimation. Mechatronics, 23(3), 310–317.

    Article  Google Scholar 

  18. 18.

    Li, M., Li, Y., Ge, S. S., & Lee, T. H. (2017). Adaptive control of robotic manipulators with unified motion constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1), 184–194.

    Article  Google Scholar 

  19. 19.

    Yen, V. T., Nan, W. Y., & Van Cuong, P. (2019). Robust adaptive sliding mode neural networks control for industrial robot manipulators. International Journal of Control, Automation and Systems, 17(3), 783–792.

    Article  Google Scholar 

  20. 20.

    Jung, S. (2018). Improvement of tracking control of a sliding mode controller for robot manipulators by a neural network. International Journal of Control, Automation and Systems, 16(2), 937–943.

    Article  Google Scholar 

  21. 21.

    Tai, N. T., & Ahn, K. K. (2010). A RBF neural network sliding mode controller for SMA actuator. International Journal of Control, Automation and Systems, 8(6), 1296–1305.

    Article  Google Scholar 

  22. 22.

    Man, Z., Paplinski, A. P., & Wu, H. R. (1994). A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Transactions on Automatic Control, 39(12), 2464–2469.

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Feng, Y., Yu, X., & Man, Z. (2002). Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38(12), 2159–2167.

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Rouhani, E., & Erfanian, A. (2018). A finite-time adaptive fuzzy terminal sliding mode control for uncertain nonlinear systems. International Journal of Control, Automation and Systems, 16(4), 1938–1950.

    Article  Google Scholar 

  25. 25.

    Dinh, T. X., & Ahn, K. K. (2017). Radial basis function neural network based adaptive fast nonsingular terminal sliding mode controller for piezo positioning stage. International Journal of Control, Automation and Systems, 15(6), 2892–2905.

    Article  Google Scholar 

  26. 26.

    Van, M., Ge, S. S., & Ren, H. (2017). Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Transactions on Cybernetics, 47(7), 1681–1693.

    Article  Google Scholar 

  27. 27.

    Jin, M., Lee, J., & Ahn, K. K. (2015). Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation. IEEE/ASME Transactions on Mechatronics, 20(2), 899–909.

    Article  Google Scholar 

  28. 28.

    Van, M., Mavrovouniotis, M., & Ge, S. S. (2018). An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–11.

  29. 29.

    Nojavanzadeh, D., & Badamchizadeh, M. (2016). Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory & Applications, 10(13), 1565–1572.

    MathSciNet  Article  Google Scholar 

  30. 30.

    Dong, J.-P., Sun, J.-G., Guo, Y., & Song, S.-M. (2018). Guidance laws against towed decoy based on adaptive back-stepping sliding mode and anti-saturation methods. International Journal of Control, Automation and Systems, 16(4), 1724–1735.

    Article  Google Scholar 

  31. 31.

    Chen, C. S. (2008). Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Transactions on Industrial Electronics, 55(9), 3402–3414.

    Article  Google Scholar 

  32. 32.

    Sun, T., Pei, H., Pan, Y., Zhou, H., & Zhang, C. (2011). Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing, 74(14), 2377–2384.

    Article  Google Scholar 

  33. 33.

    He, W., David, A. O., Yin, Z., & Sun, C. (2016). Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(6), 759–770.

    Article  Google Scholar 

  34. 34.

    Zhang, S., Lei, M., Dong, Y., & He, W. (2016). Adaptive neural network control of coordinated robotic manipulators with output constraint. IET Control Theory & Applications, 10(17), 2271–2278.

    MathSciNet  Article  Google Scholar 

  35. 35.

    Tai, N., & Ahn, K. K. (2012). A hysteresis functional link artificial neural network for identification and model predictive control of SMA actuator. Journal of Process Control, 22, 766–777.

    Article  Google Scholar 

  36. 36.

    Yue, M., Wang, L., & Ma, T. (2017). Neural network based terminal sliding mode control for WMRs affected by an augmented ground friction with slippage effect. IEEE/CAA Journal of Automatica Sinica, 4(3), 498–506.

    MathSciNet  Article  Google Scholar 

  37. 37.

    Murray, R. M., Li, Z., Sastry, S. S., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. CRC Press.

  38. 38.

    Yang, L., & Yang, J. (2010). Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. International Journal of Robust and Nonlinear Control, 21(16), 1865–1879.

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover Publications.

    Google Scholar 

  40. 40.

    Khalil, H. K. (2002). Nonlinear systems. Prentice Hall.

  41. 41.

    Tran, D.-T., Truong, H.-V.-A., & Ahn, K. K. (2019). Adaptive backstepping sliding mode control based RBFNN for a hydraulic manipulator including actuator dynamics. Applied Sciences, 9(6), 1265.

    Article  Google Scholar 

  42. 42.

    Yang, T., Sun, N., Chen, H., & Fang, Y. (2019). Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Transactions on Neural Networks and Learning Systems, 1–14.

  43. 43.

    Sun, N., Yang, T., Fang, Y., Wu, Y., & Chen, H. (2019). Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(7), 1408–1418.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, South Korea (NRF-2020R1A2B5B03001480).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyoung Kwan Ahn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tran, DT., Truong, HVA. & Ahn, K.K. Adaptive Nonsingular Fast Terminal Sliding mode Control of Robotic Manipulator Based Neural Network Approach. Int. J. Precis. Eng. Manuf. 22, 417–429 (2021). https://doi.org/10.1007/s12541-020-00427-4

Download citation

Keywords

  • Fast terminal sliding mode control
  • Manipulator
  • Radial basis function neural network
  • Lyapunov approach