Design of Fixations for an Exoskeleton Device with Joint Axis Misalignments

Abstract

This study aims to solve problems caused by misalignments between exoskeleton systems and the human body. Misalignments interfere with the achievement of the wearer’s motion intention by generating unintended interaction forces between the wearer and the exoskeleton system. Therefore, this study attempts to overcome this problem by applying an additional degree of freedom (DOF) to the fixation of the human body. First, we analyzed a system of a human body and exoskeleton connected by serial chains. Second, we derived all possible DOF sets for a 7-DOF exoskeleton system and determined the final DOF set based on practical applicability. Finally, we measured the interaction forces generated during the operation of the exoskeleton system to verify the effects of the fixation mechanism. The significance of the results was confirmed by a t test with a significance level of p ≤ 0.05.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics,11(2), 128–138.

    Article  Google Scholar 

  2. 2.

    Carignan, C., & Liszka, M. (2005). Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In Proceedings of 12th international conference on advanced robotics, ICAR ‘05 (pp. 524–531).

  3. 3.

    Rocon, E., Belda-Lois, J. M., Ruiz, A. F., Manto, M., Moreno, J. C., & Pons, J. L. (2007). Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Transactions on Neural Systems and Rehabilitation Engineering,15(3), 367–378.

    Article  Google Scholar 

  4. 4.

    Kawamoto, H., Hayashi, T., Sakurai, T., Eguchi, K., & Sankai, Y. (2009). Development of single leg version of HAL for hemiplegia. In Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5038–5043).

  5. 5.

    Frisoli, A., Borelli, L., Montagner, A., Marcheschi, S., Procopio, C., Salsedo, F., et al. (2007). Arm rehabilitation with a robotic exoskeleleton in Virtual Reality. In Proceedings of the 2007 IEEE 10th international conference on rehabilitation robotics (pp. 631–642).

  6. 6.

    Perry, J. C., Rosen, J., & Burns, S. (2007). Upper-limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics,12(4), 408–417.

    Article  Google Scholar 

  7. 7.

    Lee, H., Lee, B., Kim, W., Gil, M., Han, J., & Han, C. (2012). Human-robot cooperative control based on pHRI (physical human–robot interaction) of exoskeleton robot for a human upper extremity. International Journal of Precision Engineering and Manufacturing,13(6), 985–992.

    Article  Google Scholar 

  8. 8.

    Schiele, A., & Van Der Helm, F. C. T. (2006). Kinematic design to improve ergonomics in human machine interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering,14(4), 456–469.

    Article  Google Scholar 

  9. 9.

    Kim, W., Lee, H., Kim, D., Han, J., & Han, C. (2014). Mechanical design of the Hanyang exoskeleton assistive robot (HEXAR). In 14th International conference on control, automation and systems (ICCAS 2014) (pp. 479–484).

  10. 10.

    Letier, P., Avraam, M., Veillerette, S., Horodinca, M., De Bartolomei, M., Schiele, A., et al. (2008). SAM: A 7-DOF portable arm exoskeleton with local joint control. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3501–3506).

  11. 11.

    Cempini, M., De Rossi, S. M. M., Lenzi, T., Vitiello, N., & Carrozza, M. C. (2013). Self-alignment mechanisms for assistive wearable robots: a kinetostatic compatibility method. IEEE Transactions on Robotics,29(1), 236–250.

    Article  Google Scholar 

  12. 12.

    Li, J., Zhang, Z., Tao, C., & Ji, R. (2017). A number synthesis method of the self-adapting upper-limb rehabilitation exoskeletons. International Journal of Advanced Robotic Systems,14(3), 1–14.

    Google Scholar 

  13. 13.

    Kim, K., Kang, M., Choi, Y., Jang, H., Han, J., & Han, C. (2012). Development of the exoskeleton knee rehabilitation robot using the linear actuator. International Journal of Precision Engineering and Manufacturing,13(10), 1889–1895.

    Article  Google Scholar 

  14. 14.

    Stienen, A. H. A., Hekman, E. E. G., van der Helm, F. C. T., & van der Kooij, H. (2009). Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Transactions on Robotics,25(3), 628–633.

    Article  Google Scholar 

  15. 15.

    Jarrassé, N., & Morel, G. (2011). Connecting a human limb to an exoskeleton. IEEE Transactions on Robotics,28(3), 697–709.

    Article  Google Scholar 

  16. 16.

    Diez-Martínez, C. R., Rico, J. M., & Gallardo, J. (2006). Mobility and connectivity in multiloop linkages. In J. Lenarþiþ & B. Roth (Eds.), Advances in robot kinematics (pp. 455–464). Netherlands: Springer.

    Google Scholar 

  17. 17.

    Kim, H., Miller, L. M., Byl, N., Abrams, G. M., & Rosen, J. (2012). Redundancy resolution of the human arm and an upper limb exoskeleton. IEEE Transactions on Biomedical Engineering,59(6), 1770–1779.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industry Core Technology Development Project, 10052967, Development of Integrated Control System in Special Purpose Machinery for the Application for Disaster, funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-soo Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Lee, S.C. & Han, C. Design of Fixations for an Exoskeleton Device with Joint Axis Misalignments. Int. J. Precis. Eng. Manuf. 21, 1291–1298 (2020). https://doi.org/10.1007/s12541-019-00311-w

Download citation

Keywords

  • Exoskeleton
  • Fixation
  • Misalignment
  • Connectivity
  • Degree of freedom