Skip to main content
Log in

Surface Morphologies in Ultra-short Pulsed Laser Processing of Stainless-Steel at High Repetition Rate

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Stainless-steel is ablated with femtosecond laser pulses at high repetition rate. A multi-pass, high spatial overlap laser scanning strategy is applied in order to cope with the requirements for large-scale machining of high aspect ratio structures. Topography of the processed surfaces is analyzed via Shear Force Microscopy scans, with the main aim to investigate morphology changes as a function of process parameters. Quantitative assessment of local height variations enables a detailed investigation of the produced features. Depending on the process parameters, in particular on laser fluence and repetition rate, a transition from small islands to large bumps is observed, explained in terms of feature coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

X :

Longitudinal direction of laser scan

Y :

Lateral direction of laser scan

RR:

Laser repetition rate

v:

Laser scan speed

F:

Laser fluence

S q :

Root-mean-square roughness

S pd :

Surface peak density according to ISO 12178

A ma :

Average motif area according to ISO 12178

S ks :

Motif mean slope according to ISO 12178

References

  1. Pauleau, Y. (Ed.). (2006). Materials surface processing by directed energy techniques—European materials research society series. Amsterdam: Elsevier.

    Google Scholar 

  2. Bhushan, B. (2009). Biomimetics: lessons from nature—An overview. Philosophical Transactions of the Royal Society A, 367, 1445–1486.

    Article  Google Scholar 

  3. Bhushan, B. (2016). Biomimetics: bioinspired hierarchical-structured surfaces for green science and technology. Berlin: Springer.

    Book  Google Scholar 

  4. Yao, X., Song, Y., & Jiang, L. (2011). Applications of bio-inspired special wettable surfaces. Advanced Materials, 23, 719–734.

    Article  Google Scholar 

  5. Kwon, M. H., Jee, W. Y., & Chu, C. N. (2015). Fabrication of hydrophobic surfaces using copper electrodeposition and oxidation. International Journal of Precision Engineering and Manufacturing, 16, 877–882.

    Article  Google Scholar 

  6. Katsikogianni, M., & Missirlis, Y. F. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells & Materials, 8, 37–57.

    Article  Google Scholar 

  7. Lutey, A. H., Gemini, L., Romoli, L., Lazzini, G., Fuso, F., Faucon, M., et al. (2018). Towards laser-textured antibacterial surfaces. Scientific Reports, 8, 1–10.

    Article  Google Scholar 

  8. Wu, D., Wang, J., Wu, S., Chen, Q., Zhao, S., Zhang, H., et al. (2011). Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding. Advanced Functional Materials, 21, 2927–2932.

    Article  Google Scholar 

  9. Ko, D., Tumbleston, J. R., Henderson, K. J., Euliss, L. E., De Simone, J. M., Lopez, R., et al. (2011). Biomimetic microlens array with antireflective moth-eye surface. Soft Matter, 7, 6404–6407.

    Article  Google Scholar 

  10. Lee, H., Lee, P. B., & Messersmith, P. B. (2007). A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 448, 338–341.

    Article  Google Scholar 

  11. Feng, J., Tuominen, M. T., & Rothstein, J. P. (2011). Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures. Advanced Functional Materials, 21, 3715–3722.

    Article  Google Scholar 

  12. Valbusa, U., Boragno, C., & Buatier de Mongeot, F. (2002). Nanostructuring surfaces by ion sputtering. Journal of Physics: Condensed Matter, 14, 8153–8175.

    Google Scholar 

  13. D’Acunto, M., Fuso, F., Micheletto, R., Naruse, M., Tantussi, F., & Allegrini, M. (2017). Near-field surface plasmon field enhancement induced by rippled surfaces. Beilstein Journal of Nanotechnology, 8, 956–967.

    Article  Google Scholar 

  14. Lee, C. M., Woo, W. S., Baek, J. T., & Kim, E. J. (2016). Laser and arc manufacturing processes: A review. International Journal of Precision Engineering and Manufacturing, 17, 973–985.

    Article  Google Scholar 

  15. Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F., & Tünnermann, A. (1996). Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 63, 109–115.

    Article  Google Scholar 

  16. Bonse, J., Hohm, S., Kimer, S. V., Rosenfeld, A., & Kruger, J. (2017). Laser-induced periodic surface structures—A scientific evergreen. IEEE Journal of Selected Topics in Quantum Electronics, 23, 9000615.

    Article  Google Scholar 

  17. Reif, J., Varlamova, O., Uhlig, S., Varlamov, S., & Bestehorn, M. (2014). On the physics of self-organized nanostructure formation upon femtosecond laser ablation. Applied Physics A, 117, 179–184.

    Article  Google Scholar 

  18. Lazzini, G., Romoli, L., Blunt, L., & Gemini, L. (2017). Design and characterization of textured surfaces for applications in the food industry. Surface Topography: Metrology and Properties, 5, 044005.

    Google Scholar 

  19. Tantussi, F., Vella, D., Allegrini, M., Fuso, F., Romoli, L., & Rashed, C. A. A. (2015). Shear-force microscopy investigation of roughness and shape of micro-fabricated holes. Precision Engineering, 41, 32–39.

    Article  Google Scholar 

  20. Romoli, L., Rashed, C. A. A., Lovicu, G., Dini, G., Tantussi, F., Fuso, F., et al. (2014). Ultrashort pulsed laser drilling and surface structuring of microholes in stainless steels. CIRP Annals-Manufacturing Technology, 63, 229–232.

    Article  Google Scholar 

  21. Rashed, C. A. A., Romoli, L., Tantussi, F., Fuso, F., Bertoncini, L., Fiaschi, M., et al. (2014). Experimental optimization of micro-electrical discharge drilling process from the perspective of inner surface enhancement measured by shear-force microscopy. CIRP Journal of Manufacturing Science and Technology, 7, 11–19.

    Article  Google Scholar 

  22. Karrai, K., & Tiemann, I. (2000). Interfacial shear force microscopy. Physical Review B, 62, 13174–13181.

    Article  Google Scholar 

  23. Pietroy, D., Di Maio, Y., Moine, B., Baubeau, E., & Audouard, E. (2012). Femtosecond laser volume ablation rate and threshold measurements by differential weighing. Optics Express, 20, 29900–29908.

    Article  Google Scholar 

  24. Momma, C., Chichkov, B. N., Nolte, S., von Alvensleben, F., Tünnermann, A., Welling, H., et al. (1996). Short-pulse laser ablation of solid targets. Optics Communication, 129, 132–134.

    Article  Google Scholar 

  25. Nečas, D., & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics, 10, 181–188.

    Google Scholar 

  26. Sipe, J. E., Young, J. F., Preston, J. S., & van Driel, H. M. (1983). Laser-induced periodic surface structure. I. Theory. Physical Review B, 27, 1141–1154.

    Article  Google Scholar 

  27. Young, J. F., Preston, J. S., van Driel, H. M., & Sipe, J. E. (1983). Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Physical Review B, 27, 1155–1172.

    Article  Google Scholar 

  28. Bonse, J., Hohm, S., Kimer, S. V., Rosenfeld, A., & Kruger, J. (2012). Femtosecond laser-induced periodic surface structures. Journal of Laser Applications, 24, 042006.

    Article  Google Scholar 

  29. Pham, K. X., Tanabe, R., & Ito, Y. (2013). Laser-induced periodic surface structures formed on the sidewalls of microholes trepanned by a femtosecond laser. Applied Physics A, 112, 485–493.

    Article  Google Scholar 

  30. Lazzini, G., Romoli, L., Tantussi, F., & Fuso, F. (2018). Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization. Optics & Laser Technology, 107, 435–442.

    Article  Google Scholar 

  31. Gemini, L., Hashida, M., Shimizu, M., Miyazaka, Y., Inoue, S., Tokita, S., et al. (2013). Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses. Journal of Applied Physics, 114, 194903.

    Article  Google Scholar 

  32. Martinez-Calderon, M., Rodriguez, A., Dias-Ponte, A., Morant-Miñana, M. C., Gomez-Aranzadi, M., & Olaizola, S. M. (2016). Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS. Applied Surface Science, 374, 81–89.

    Article  Google Scholar 

  33. Mincuzzi, G., Gemini, L., Faucon, M., & Kling, R. (2016). Extending ultra-short pulse laser texturing over large area. Applied Surface Science, 386, 65–71.

    Article  Google Scholar 

  34. Choi, S. H., Sohn, I. B., & Lee, H. (2012). Femtosecond laser-induced line structuring on mold stainless steel STAVAX with various scanning speeds and two polarization configurations. International Journal of Precision Engineering and Manufacturing, 13, 845–854.

    Article  Google Scholar 

  35. Kam, D. H., Bhattacharya, S., & Mazumder, J. (2012). Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification. Journal of Micromechanics and Microengineering, 22, 105019.

    Article  Google Scholar 

  36. Nayak, B. K., Gupta, M. C., & Kolasinski, K. W. (2008). Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Applied Physics A, 90, 399–402.

    Article  Google Scholar 

  37. Nayak, B. K., & Gupta, M. C. (2010). Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Optics and Lasers in Engineering, 48, 940–949.

    Article  Google Scholar 

  38. Tsibidis, G. D., Fotakis, C., & Stratakis, E. (2015). From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Physical Review B, 92, 041405(R).

    Article  Google Scholar 

  39. Leach, R. (2013). Introduction to surface topography. In Characterisation of areal surface texture. Springer.

  40. Eaton, S. M., Zhang, H., Herman, P. R., Yoshino, F., Shah, L., Bovatsek, J., et al. (2005). Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Optics Express, 13, 4708–4716.

    Article  Google Scholar 

  41. Marla, D., Barde, V., & Joshi, S. S. (2013). Analytical model to predict temperature distribution and ablation depth in excimer laser micromachining. International Journal of Precision Engineering and Manufacturing, 14, 29–36.

    Article  Google Scholar 

  42. Le Harzic, R., Huot, N., Audouard, E., Jonin, C., Laporte, P., Valette, S., et al. (2002). Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy. Applied Physics Letters, 80, 3886–3888.

    Article  Google Scholar 

  43. Di Niso, F., Gaudiuso, C., Sibillano, T., Mezzapesa, F. P., Ancona, A., & Lugarà, P. M. (2014). Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates. Optics Express, 22, 12200–12210.

    Article  Google Scholar 

  44. Di Niso, F., Gaudiuso, C., Sibillano, T., Mezzapesa, F. P., Ancona, A., & Lugarà, P. M. (2013). Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel. Physics Procedia, 41, 698–707.

    Article  Google Scholar 

  45. Güdde, J., Hohlfeld, J., Müller, J. G., & Matthias, E. (1998). Damage threshold dependence on electron-phonon coupling in Au and Ni films. Applied Surface Science, 127–129, 40–45.

    Article  Google Scholar 

  46. Anisimov, S. I., & Luk’yanchuk, B. S. (2002). Selected problems of laser ablation theory. Physics-Uspekhi, 45, 293–324.

    Article  Google Scholar 

  47. Amoruso, S., Bruzzese, R., Wang, X., & Xia, J. (2008). Propagation of a femtosecond pulsed laser ablation plume into a background atmosphere. Applied Physics Letters, 92, 041503.

    Article  Google Scholar 

Download references

Acknowledgements

This work has received funding from the EU Horizon 2020 Research and Innovation Programme under Grant Agreement No. 687613 “TresClean”. GL, MA and FF gratefully acknowledge technical assistance with the ShFM setup from Nicola Puccini and Enrico Andreoni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fuso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzini, G., Gemini, L., Lutey, A.H.A. et al. Surface Morphologies in Ultra-short Pulsed Laser Processing of Stainless-Steel at High Repetition Rate. Int. J. Precis. Eng. Manuf. 20, 1465–1474 (2019). https://doi.org/10.1007/s12541-019-00174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00174-1

Keywords

Navigation