Skip to main content
Log in

Investigation of the Ductile Cutting Behavior of Monocrystalline Yttria-Stabilized Zirconia During Ultra-Precision Orthogonal Cutting

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Manufacturability of advanced ceramics has been a challenging issue mainly because of their brittle behaviors and high hardness. One approach to solving this issue is enabling ductile regime cutting, which can also be used to enhance the quality of the surface and accuracy of the final product. There have been many studies investigating how to control and prolong the ductile response regime during cutting; however, it still lacks a straightforward explanation that enables us to predict the transition of the material response from the ductile regime to the brittle regime. In this study, the processing of monocrystalline yttria-stabilized zirconia was investigated to predict material behavior during cutting. Here, it is aimed to confirm that stress intensity factor analysis can be applied with a wide variety of process parameters and investigate the effect of varying the process parameters on the ductile–brittle material response transition. Experimental results showed that negative rake angle and higher cutting speed prolonged the ductile cutting regime. However, the cutting stress at the ductile–brittle transition point remained constant regardless of the process parameters which enabled us to predict the transition point with respect to the stress intensity factor. It is expected that the results of this research can contribute to the development of machining strategies with improved throughput and thus to increasing the utilization of ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu, Z. Y., Huang, C., Zhao, Y., & Guo, Y. B. (2017). Kinematic modeling and deformation mechanics in shot peening of functional ceramics. International Journal of Advanced Manufacturing Technology, 93(5–8), 1669–1683. https://doi.org/10.1007/s00170-017-0661-y.

    Article  Google Scholar 

  2. Ferraris, E., Vleugels, J., Guo, Y., Bourell, D., Kruth, J. P., & Lauwers, B. (2016). Shaping of engineering ceramics by electro, chemical and physical processes. CIRP Annals, 65(2), 761–784. https://doi.org/10.1016/j.cirp.2016.06.001.

    Article  Google Scholar 

  3. Anselmi-Tamburini, U., Woolman, J. N., & Munir, Z. A. (2007). Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Advanced Functional Materials, 17(16), 3267–3273. https://doi.org/10.1002/adfm.200600959.

    Article  Google Scholar 

  4. Hannink, R. H. J., Kelly, P. M., & Muddle, B. C. (2000). Transformation toughening in zirconia-containing ceramics. Journal of the American Ceramic Society, 83(3), 461–487. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x.

    Article  Google Scholar 

  5. Schelling, P. K., Phillpot, S. R., & Wolf, D. (2001). Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. Journal of the American Ceramic Society, 84(7), 1609–1619. https://doi.org/10.1111/j.1151-2916.2001.tb00885.x.

    Article  Google Scholar 

  6. Pfefferkorn, F. E., Shin, Y. C., Tian, Y., & Incropera, F. P. (2004). Laser-assisted machining of magnesia-partially-stabilized zirconia. Journal of Manufacturing Science and Engineering, 126(1), 42–51. https://doi.org/10.1115/1.1644542.

    Article  Google Scholar 

  7. Pashmforoush, F., & Esmaeilzare, A. (2017). Experimentally validated finite element analysis for evaluating subsurface damage depth in glass grinding using Johnson-Holmquist model. International Journal of Precision Engineering and Manufacturing 18(12), 1841–1847. https://doi.org/10.1007/s12541-017-0213-2.

    Article  Google Scholar 

  8. Neo, W. K., Kumar, A. S., & Rahman, M. (2012). A review on the current research trends in ductile regime machining. International Journal of Advanced Manufacturing Technology, 63(5–8), 465–480. https://doi.org/10.1007/s00170-012-3949-y.

    Article  Google Scholar 

  9. Maas, P., Mizumoto, Y., Kakinuma, Y., & Min, S. (2017). Machinability study of single-crystal sapphire in a ball-end milling process. International Journal of Precision Engineering and Manufacturing 18(1), 109–114. https://doi.org/10.1007/s12541-017-0013-8.

    Article  Google Scholar 

  10. Zhang, G., Zeng, Y., Zhang, W., Zhou, H., Wen, Z., & Yao, Y. (2016). Monitoring for damage in two-dimensional pre-stress scratching of SiC ceramics. International Journal of Precision Engineering and Manufacturing 17(11), 1425–1432. https://doi.org/10.1007/s12541-016-0168-8.

    Article  Google Scholar 

  11. Chen, J. B., Fang, Q. H., Wang, C. C., Du, J. K., & Liu, F. (2016). Theoretical study on brittle–ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precis Engineering 46, 104–117. https://doi.org/10.1016/j.precisioneng.2016.04.005.

    Article  Google Scholar 

  12. Venkatachalam, S., Li, X., & Liang, S. Y. (2009). Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials. Journal of Materials Processing Technology, 209(7), 3306–3319. https://doi.org/10.1016/j.jmatprotec.2008.07.036.

    Article  Google Scholar 

  13. Arif, M., Xinquan, Z., Rahman, M., & Kumar, S. (2013). A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials. International Journal of Machine Tools and Manufacture 64, 114–122. https://doi.org/10.1016/j.ijmachtools.2012.08.005.

    Article  Google Scholar 

  14. Mizumoto, Y., Maas, P., Kakinuma, Y., & Min, S. (2017). Investigation of the cutting mechanisms and the anisotropic ductility of monocrystalline sapphire. CIRP Annals, 66(1), 89–92. https://doi.org/10.1016/j.cirp.2017.04.018.

    Article  Google Scholar 

  15. Yoon, H.-S., Kwon, S. B., Nagaraj, A., Lee, S., & Min, S. (2018). Study of stress intensity factor on the anisotropic machining behavior of single crystal sapphire. CIRP Annals, 67(1), 125–128. https://doi.org/10.1016/j.cirp.2018.04.114.

    Article  Google Scholar 

  16. Yoon, H.-S., Lee, S., & Min, S. (2018). Investigation of ductile-brittle transition in machining of yttrium-stabilized zirconia (YSZ). In Procedia Manufacturing, 46th SME North American manufacturing research conference, NAMRC 46, Texas, USA (Vol. 26 , pp. 446–453). https://doi.org/10.1016/j.promfg.2018.07.052.

  17. Pajares, A., Guiberteau, F., Dominguez-Rodriguez, A., & Heuer, A. H. (1988). Microhardness and fracture toughness anisotropy in cubic zirconium oxide single crystals. Journal of the American Ceramic Society, 71(7), 332–333. https://doi.org/10.1111/j.1151-2916.1988.tb05933.x.

    Article  Google Scholar 

  18. Günay, M., Aslan, E., Korkut, I., & Seker, U. (2004). Investigation of the effect of rake angle on main cutting force. International Journal of Machine Tools and Manufacture, 44(9), 953–959. https://doi.org/10.1016/j.ijmachtools.2004.01.015.

    Article  Google Scholar 

  19. Kienzle, O., & Victor, H. (1957). Spezifische Schnittkräfte bei der Metallbearbeitung. Werkstattstechnik und Maschinenbau, 47(5), 224–255.

    Google Scholar 

  20. Grossi, N. (2017). Accurate and fast measurement of specific cutting force coefficients changing with spindle speed. International Journal of Precision Engineering and Manufacturing 18(8), 1173–1180. https://doi.org/10.1007/s12541-017-0137-x.

    Article  Google Scholar 

  21. Yoon, H.-S., Wu, R., Lee, T.-M., & Ahn, S.-H. (2011). Geometric optimization of micro drills using Taguchi methods and response surface methodology. International Journal of Precision Engineering and Manufacturing 12(5), 871–875. https://doi.org/10.1007/s12541-011-0116-6.

    Article  Google Scholar 

  22. Kim, C.-J., Mayor, R., & Ni, J. (2012). Molecular dynamics simulations of plastic material deformation in machining with a round cutting edge. International Journal of Precision Engineering and Manufacturing 13(8), 1303–1309. https://doi.org/10.1007/s12541-012-0173-5.

    Article  Google Scholar 

  23. Luo, S., Bayesteh, A., Ko, J., Dong, Z., & Jun, M. B. (2017). Numerical simulation of chip ploughing volume in micro ball-end mill machining. International Journal of Precision Engineering and Manufacturing, 18(7), 915–922. https://doi.org/10.1007/s12541-017-0108-2.

    Article  Google Scholar 

  24. Blake, P. N., & Scattergood, R. O. (1990). Ductile-regime machining of germanium and silicon. Journal of the American Ceramic Society, 73(4), 949–957. https://doi.org/10.1111/j.1151-2916.1990.tb05142.x.

    Article  Google Scholar 

  25. Chen, X., Xu, J., Fang, H., & Tian, R. (2017). Influence of cutting parameters on the ductile-brittle transition of single-crystal calcium fluoride during ultra-precision cutting. International Journal of Advanced Manufacturing Technology, 89(1–4), 219–225. https://doi.org/10.1007/s00170-016-9063-9.

    Article  Google Scholar 

  26. Yan, J., Syoji, K., Kuriyagawa, T., & Suzuki, H. (2002). Ductile regime turning at large tool feed. Journal of Materials Processing Technology, 121(2–3), 363–372. https://doi.org/10.1016/S0924-0136(01)01218-3.

    Article  Google Scholar 

  27. Wang, J.-J. J., & Liao, Y.-Y. (2007). Critical depth of cut and specific cutting energy of a microscribing process for hard and brittle materials. Journal of Engineering Materials and Technology, 130(1), 011002–011002–6. https://doi.org/10.1115/1.2806253.

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge kind support from the FANUC Corporation, Japan, for the loan of the 5-axis ultra-precision machine tool, ROBONANO α-0iB, and A.L.M.T. Corp., Japan, for providing PCD tools to MIN LAB at UW-Madison. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (Nos. NRF-2018R1C1B5085752 and NRF-2016R1A6A3A03012011), and 2018 Korea Aerospace University Faculty Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangkee Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, HS., Kwon, S.B., Nagaraj, A. et al. Investigation of the Ductile Cutting Behavior of Monocrystalline Yttria-Stabilized Zirconia During Ultra-Precision Orthogonal Cutting. Int. J. Precis. Eng. Manuf. 20, 1475–1484 (2019). https://doi.org/10.1007/s12541-019-00150-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00150-9

Keywords

Navigation