Skip to main content
Log in

A Novel Passive Quasi-Zero Stiffness Isolator for Ultra-Precision Measurement Systems

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In the paper, a novel passive vibration isolator is proposed for an ultra-precision sensing system, utilizing a quasi-zero stiffness (QZS) mechanism. The QZS mechanism implements the high static low dynamic stiffness, which effectively reduces the dynamic force transmission while minimizing the static deflection under the natural frequency of conventional passive isolator. Furthermore, it does not need any electric components; the mechanism is suitable for the ultra-precision sensing systems measuring extremely weak electromagnetic fields. However, nonlinear stiffness and hysteresis caused from the negative stiffness elements degrade the system performance. A vertical spring with a pre-tension and eight horizontal plate springs with nonlinear buckling characteristics constitute the proposed system to solve these problems. The mathematical model compares the negative stiffness design with previous QZS research. The buckled plate spring with ball joint design reduces stiffness variation. Transmissibility of the proposed system for low frequency range is investigated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Griggs, C., Moody, M., Norton, R., Paik, H., & Venkateswara, K. (2017). Sensitive superconducting gravity gradiometer constructed with levitated test masses. Physical Review Applied, 8(6), 064024.

    Article  Google Scholar 

  2. Van Trung, P., Kim, K.-R., & Ahn, H.-J. (2013). A nonlinear control of an QZS isolator with flexures based on a lyapunov function. International Journal of Precision Engineering Manufacturing, 14(6), 919–924.

    Article  Google Scholar 

  3. Turnip, A., Park, S., & Hong, K.-S. (2010). Sensitivity control of a MR-damper semi-active suspension. International Journal of Precision Engineering, 11(2), 209–218.

    Article  Google Scholar 

  4. Ibrahim, R. (2008). Recent advances in nonlinear passive vibration isolators. Journal of sound vibration, 314(3–5), 371–452.

    Article  Google Scholar 

  5. Lee, J.-H., & Kim, K.-J. (2007). Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations. Journal of sound vibration, 301(3–5), 909–926.

    Article  Google Scholar 

  6. Johnson, C. D., Wilke, P. S., & Darling, K. R. Multi-axis whole-spacecraft vibration isolation for small launch vehicles. In Smart Structures and Materials 2001: Damping and Isolation, 2001 (Vol. 4331, pp. 153–162): International Society for Optics and Photonics.

  7. Le, T. D., & Ahn, K. K. (2011). A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. Journal of Sound Vibration, 330(26), 6311–6335.

    Article  Google Scholar 

  8. Xu, D., Yu, Q., Zhou, J., & Bishop, S. (2013). Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound Vibration, 332(14), 3377–3389.

    Article  Google Scholar 

  9. Shin, K. (2014). On the performance of a single degree-of-freedom high-static-low-dynamic stiffness magnetic vibration isolator. International Journal of Precision Engineering Manufacturing, 15(3), 439–445. https://doi.org/10.1007/s12541-014-0355-4.

    Article  Google Scholar 

  10. Lan, C.-C., Yang, S.-A., & Wu, Y.-S. (2014). Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. Journal of Sound and Vibration, 333(20), 4843–4858. https://doi.org/10.1016/j.jsv.2014.05.009.

    Article  Google Scholar 

  11. Kim, K.-R., You, Y.-H., & Ahn, H.-J. (2013). Optimal design of a QZS isolator using flexures for a wide range of payload. International Journal of Precision Engineering Manufacturing, 14(6), 911–917. https://doi.org/10.1007/s12541-013-0120-0.

    Article  Google Scholar 

  12. Wang, X., Zhou, J., Xu, D., Ouyang, H., & Duan, Y. (2017). Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dynamics, 87(1), 633–646. https://doi.org/10.1007/s11071-016-3065-x.

    Article  Google Scholar 

  13. Kovacic, I., Brennan, M. J., & Waters, T. P. (2008). A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. Journal of Sound and Vibration, 315(3), 700–711. https://doi.org/10.1016/j.jsv.2007.12.019.

    Article  Google Scholar 

  14. Carrella, A., Brennan, M. J., & Waters, T. P. (2007). Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301(3), 678–689. https://doi.org/10.1016/j.jsv.2006.10.011.

    Article  Google Scholar 

  15. Ahn, H.-J. (2008). Performance limit of a passive vertical isolator using a negative stiffness mechanism. Journal of Mechanical Science Technology, 22(12), 2357. https://doi.org/10.1007/s12206-008-0930-7.

    Article  Google Scholar 

  16. Huang, X., Chen, Y., Hua, H., Liu, X., & Zhang, Z. (2015). Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: Theoretical and experimental study. Journal of Sound and Vibration, 345, 178–196. https://doi.org/10.1016/j.jsv.2015.02.001.

    Article  Google Scholar 

  17. Liu, X., Huang, X., & Hua, H. (2013). On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. Journal of Sound and Vibration, 332(14), 3359–3376. https://doi.org/10.1016/j.jsv.2012.10.037.

    Article  Google Scholar 

  18. Ledezma-Ramirez, D., Guzman-Nieto, M., Tapia-Gonzalez, P., & Ferguson, N. Shock isolation systems using non linear stiffness and damping. In International Conference on Noise and Vibration Engineering, 2014 (pp. 4111–4122).

  19. Lang, R. F., & Seidel, W. (2009). Search for dark matter with CRESST. New Journal of Physics, 11(10), 105017.

    Article  Google Scholar 

  20. Virgin, L. N., & Davis, R. B. (2003). Vibration isolation using buckled struts. Journal of Sound and Vibration, 260(5), 965–973. https://doi.org/10.1016/S0022-460X(02)01177-X.

    Article  Google Scholar 

  21. Rao, S. S., & Yap, F. F. (2011). In M. J. Horton (Ed.), Mechanical vibrations (Vol. 4). Upper Saddle River: Prentice hall.

    Google Scholar 

  22. Bratosin, D., & Sireteanu, T. Hysteretic damping modelling by nonlinear Kelvin-Voigt model. In Romanian AcademySeries A: Mathematics, Physics, Technical Sciences, Information Science, 2002 (Vol. 3, pp. 99–104).

Download references

Acknowledgements

This research was supported by the Agency for Defense Development.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung-Soo Kim or Soohyun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Jeon, Y., Um, S. et al. A Novel Passive Quasi-Zero Stiffness Isolator for Ultra-Precision Measurement Systems. Int. J. Precis. Eng. Manuf. 20, 1573–1580 (2019). https://doi.org/10.1007/s12541-019-00149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00149-2

Keywords

Navigation