Skip to main content
Log in

Design and Test of the MEMS Coupled Piezoelectric–Electromagnetic Energy Harvester

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper researches on the design and test of the output performance of double-end clamped MEMS coupled piezoelectric–electromagnetic energy harvester. It establishes the theoretical output model of the double-end clamped rectangular beam and trapezoidal beam piezoelectric–electromagnetic energy harvester, and optimizes the structure parameters of piezoelectric and electromagnetic unit with simulation analysis. It also respectively realizes the processing of piezoelectric and electromagnetic unit by MEMS and flexible PCB technology, and completes the performance test of structure prototype through the experimental system. The result showed that the capacity of MEMS coupled piezoelectric–electromagnetic energy harvester, which taked four coil piezoelectric with integrated electromagnetic in series, was 12.23 times higher than that of piezoelectric energy harvester. Also the output voltage and power of coupled trapezoidal beam energy harvester were respectively increased 18.89% and 2.26%, compared with coupled rectangular beam energy harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Abbreviations

t :

Time

m ε :

Equivalent mass

c ε :

Equivalent damping

k :

Equivalent stiffness

k 1, k 3 :

Nonlinear stiffness introduced by large deformation

θ:

Coupling coefficient of piezoelectricity

γ:

Coupling coefficient of electromagnetism

z(t):

Displacement function

V(t):

Piezoelectric partial voltage function

i(t):

Electromagnetic partial current function

a(t):

Acceleration

μ :

Calibration factor of the energy harvester system model

R 1 :

Loading resistance of the piezoelectric part

R 2 :

Internal equivalent resistance

R 3 :

Loading resistance of the electromagnetic part

C :

Equivalent capacitance of the piezoelectric part

L :

Equivalent inductance of the electromagnetic part

References

  1. Inman, D. J., & Karami, M. A. (2012). Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Applied Physics Letters, 100(4), 042901–042904.

    Article  Google Scholar 

  2. Ling, C. S., Hewitt, D., Burrow, S. G., Clare, L., Barton, D. A. W., Wells, D. M., et al. (2013). Technological challenges of developing wireless health and usage monitoring systems. Proceedings of SPIE, 8695(1), 86950.

    Article  Google Scholar 

  3. Nicholas, R., & Natarajan, B. (2013). A structured approach to optimization of energy harvesting. In Wireless sensor networks the 10th annual IEEE CCNC (pp. 420–425).

  4. Tiwari, R., Buch, N., & Garcia, E. (2014). Energy balance for peak detection method in piezoelectric energy harvester. Journal of Intelligent Material Systems and Structures, 25(8), 1024–1035.

    Article  Google Scholar 

  5. Wacharasindhu, T., & Wkwon, J. (2008). A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. Journal of Micromechanics and Microengineering, 18(10), 1–8.

    Article  Google Scholar 

  6. Yang, X., Wang, Y., & Cao, Y. (2014). A new hybrid piezoelectric–electromagnetic vibration-powered generator and its model and experiment research applied superconductivity. IEEE Transactions on Applied Superconductivity, 24(3), 1–4.

    Article  Google Scholar 

  7. Challa, V. R., Prasad, M. G., & Fisher, F. T. (2009). A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Materials and Structures, 18(9), 1–11.

    Article  Google Scholar 

  8. Robert, D., Wu, W. J., & Chen, Y. Y. (2008). A hybrid piezoelectric and electromagnetic energy harvesting device. In 19th International conference on AST.

  9. Tadesse, Y., Zhang, S., & Priya, S. (2009). Multimodal energy harvesting system: Piezoelectric and electromagnetic. Journal of Intelligent Material Systems and Structures, 20(5), 625–632.

    Article  Google Scholar 

  10. Li, P., Gao, S., & Cai, H. (2014). Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. International Journal of Precision Engineering and Manufacturing, 9(15), 1915–1924.

    Article  Google Scholar 

  11. Li, P., Gao, S., & Niu, S. (2014). An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester. Smart Materials and Structures, 23(6), 065016.

    Article  Google Scholar 

  12. Li, P., Gao, S., & Cai, H. (2016). Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester. Microsystem Technologies, 22(4), 727–739.

    Article  Google Scholar 

  13. Li, P., Gao, S., & Zhou, X. (2018). On the performances of a nonlinear hybrid piezoelectric and electromagnetic energy harvester. Microsystem Technologies, 24(2), 1017–1024.

    Article  Google Scholar 

  14. Marin, A., Turner, J., & Ha, D. S. (2013). Broadband electromagnetic vibration energy harvesting system for powering wireless sensor nodes. Smart Materials and Structures, 22(7), 075008.

    Article  Google Scholar 

  15. Khan, S. F. U. (2011). Vibration-based electromagnetic energy harvesters for MEMS application. Vancouver, CA: The University of British Columbia.

    Google Scholar 

  16. Yang, B., Lee, C., & Kee, W. L. (2010). Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. Journal of Micro/Nanolithography, MEMS, and MOEMS, 9(2), 1–10.

    Article  Google Scholar 

Download references

Acknowledgements

This work supported by the Natural Science Foundation of Shandong Province, China (ZR201709220253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-min Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Lm., Li, Zx., Guo, C. et al. Design and Test of the MEMS Coupled Piezoelectric–Electromagnetic Energy Harvester. Int. J. Precis. Eng. Manuf. 20, 673–686 (2019). https://doi.org/10.1007/s12541-019-00051-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00051-x

Keywords

Navigation