Skip to main content
Log in

Methods to Eliminate Surging Motion in a Conveyor System Considering Industrial Case Studies

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Conveyor surging, a phenomenon in which the conveyor repeatedly moves and stops, causes inconvenience to workers and reduces the quality of manufacturing. It is difficult to anticipate the surging motion because it occurs owing to the combination of several causes such as inertia, friction, and motor power. This paper reports on a dynamic simulation of a conveyor system to predict and eliminate the surging motion. The dynamic model of a conveyor system is based on a multimass, spring-damper system to reflect the characteristics of the real conveyor system. The surging motion is considered a stick–slip motion, in which the stick–slip is primarily caused by friction. Stribeck friction is applied to model the stick–slip motion. In the model, lubrication, motor capacity, and polygonal effects are included to simulate the actual surging motion precisely. Based on the model, we analyzed three industrial cases involving surging and nonsurging motions. For the surging cases, we investigate the primary causes of the surging motion and suggest a method to achieve the motion without surging. We expect the model to be useful in designing an improved conveyor belt without surging motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barre, P. J., Bearee, R., Borne, P., & Dumetz, E. (2005). Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. Journal of Intelligent and Robotic Systems, 42(3), 275–293.

    Article  Google Scholar 

  2. Tsubaki Chain Co. (1997). The complete guide to chain. Tsubaki, USA.

  3. Winkler, G. (1978). Analysing the vibrating conveyor. International Journal of Mechanical Sciences, 20(9), 561–570.

    Article  Google Scholar 

  4. Arolews, K., Ki, B., & Ligocki, P. (2014). Modelling of long belt conveyors. Eksploatacja i Niezawodnosc—Maintenance and Reliability, 16(2), 179–187.

    Google Scholar 

  5. Sándor, B., Járai-Szabó, F., Tél, T., & Néda, Z. (2013). Chaos on the conveyor belt. Physical Review E, 87(4), 0429207.

    Article  Google Scholar 

  6. Bo, L. C., & Pavelescu, D. (1982). The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear, 82(3), 277–289.

    Article  Google Scholar 

  7. Carlson, J. M., & Langer, J. S. (1989). Mechanical model of an earthquake fault. Physical Review A, 40(11), 6470.

    Article  MathSciNet  Google Scholar 

  8. Sergienko, O. V., MacAyeal, D. R., & Bindschadler, R. A. (2009). Stick–slip behavior of ice streams: Modeling investigations. Annals of Glaciology, 50(52), 87–94.

    Article  Google Scholar 

  9. Ritto, T. G., Aguiar, R. R., & Hbaieb, S. (2017). Validation of a drill string dynamical model and torsional stability. Meccanica, 52(11–12), 2959–2967.

    Article  MathSciNet  Google Scholar 

  10. Olsson, H., Åström, K. J., Canudas De Wit, C., Gäfvert, M., & Lischinsky, P. (1998). Friction models and friction compensation. European Journal of Control, 4(3), 176–195.

    Article  MATH  Google Scholar 

  11. Bastien, J., Michon, G., Manin, L., & Dufour, R. (2007). An analysis of the modified Dahl and Masing models: Application to a belt tensioner. Journal of Sound and Vibration, 302(4–5), 841–864.

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H., & Zhang, W. J. (2015). Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mechanical Sciences, 6(1), 15–28.

    Article  Google Scholar 

  13. Popp, K., & Stelter, P. (1990). Stick-slip vibrations and chaos. Philosophical Transactions of the Royal Society of London A, 332(1624), 89–105.

    Article  MATH  Google Scholar 

  14. Pratt, T. K., & Williams, R. (1981). Non-linear analysis of stick/slip motion. Journal of Sound and Vibration, 74(4), 531–542.

    Article  Google Scholar 

  15. Hundal, M. S. (1979). Response of a base excited system with Coulomb and viscous friction. Journal of Sound and Vibration, 64(3), 371–378.

    Article  MATH  Google Scholar 

  16. Jacobsen L. S. (1931). Forced vibration with combined coulomb and viscous friction. Trans. ASME Paper APM, pp. 53–9.

  17. Armstrong-Helouvry, B. (1991). Control of machines with friction. MA: Kluwer Boston.

    Book  MATH  Google Scholar 

  18. Lodewijks, G. (1996). Dynamics of belt systems. Doctorate, Delft University of Technology.

  19. Ogata, K. (1998). System dynamics. Upper Saddle River, NJ: Pearson Prentice Hall.

    MATH  Google Scholar 

  20. Wang, Y., Ji, D., & Zhan, K. (2013). Modified sprocket tooth profile of roller chain drives. Mechanism and Machine Theory, 70, 380–393.

    Article  Google Scholar 

  21. Mahalingam, S. (1958). Polygonal action in chain drives. Journal of the Franklin Institute, 265(1), 23–28.

    Article  Google Scholar 

  22. Pedersen, S. L. (2005). Model of contact between rollers and sprockets in chain-drive systems. Archive of Applied Mechanics, 74(7), 489–508.

    Article  MATH  Google Scholar 

  23. Banerjee, A. K. (1968). Influence of kinetic friction on the critical velocity of stick-slip motion. Wear, 12(2), 107–116.

    Article  Google Scholar 

  24. Tsubaki. (1991). Tsubaki marine engine roller chain, maintenance manual. In Catalog (Vol. 1211). Retrieved from http://pdf.directindustry.com/pdf/tsubakimoto-chain/tsubaki-marine-engine-roller-chain/5083-586802-_12.html. Accessed 20 May 2018.

  25. Zuleeg J. (2015). How to measure, prevent, and eliminate Stick-Slip and noise generation with lubricants. SAE Technical Paper, No. 2015-01-2259.

  26. Anton Paar. (2015). Tips and tricks from joe flow—stribeck curves: A powerful screening tool for tribology in a nutshell [PDF file]. Retrieved from http://www.world-of-rheology.com/fileadmin/public/rheology/Tips_Tricks_Joe_Flow/XRRIA021EN-A_Joe_Flow_Stribeck_Curves.pdf. Accessed 7 Sept 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sangrok Jin or TaeWon Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, J., Kim, Y., Kim, K. et al. Methods to Eliminate Surging Motion in a Conveyor System Considering Industrial Case Studies. Int. J. Precis. Eng. Manuf. 20, 583–592 (2019). https://doi.org/10.1007/s12541-019-00042-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00042-y

Keywords

Navigation