Effect of Vacuum Carburizing Time on Microstructure and Mechanical Properties of Tantalum Carbide Layer

Abstract

A (TaC/Ta2C) carbide bilayer is obtained by vacuum carburizing technology on the surface of Ta substrate at 1673 K for 4, 8, and 12 h. XRD, SEM and EBSD are utilized to investigated phase composition and the microstructure. The mechanical properties of the Ta and tantalum carburized materials are studied with Vicker’s hardness tester and nanoindenter, adhesion automatic scratch tester, reciprocating friction and wear testing machine. The results show that the outside surface phase composition of the carbide bilayer is all the TaC phase. With the increase of the carburizing time from 4 to 12 h, the average grain size from approximately 500 nm to 10 μm, the thickness of the carbide bilayer is from 11 to 20 μm. The microhardness increases from 104.1 to 322.5 HV, and the elastic modulus are from 466.6 to 615.3 GPa. Adhesive strength is best at 8 h, 49.1 N, compared to 19 N at 4 h and 36.5 N at 12 h. The friction and wear coefficient of Ta fluctuates significantly between 0.6 and 1.0, after carburizing treatment, the friction and wear coefficient fluctuates smoothly, and the wear resistance is well improved.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    K.D. Moser, JOM 51, 29–31 (1999)

    CAS  Article  Google Scholar 

  2. 2.

    J.C.F. Millett, N.K. Bourne, N.T. Park, G. Whiteman, G.T. Gray, J. Mater. Sci. 46, 3899–3906 (2011)

    CAS  Article  Google Scholar 

  3. 3.

    P.N. Browning, S. Alagic, B. Carroll, A. Kulkarni, L. Matson, J. Singh, Mater. Sci. Eng. A 680, 141–151 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    S.M. Cardonne, P. Kumar, C.A. Michaluk, H.D. Schwartz, Met. Hard Mater. 13, 187–194 (1995)

    CAS  Article  Google Scholar 

  5. 5.

    S.R. Chen, G.T. Gray, Metall. Mater. Trans. A 27, 2994–3006 (1996)

    Article  Google Scholar 

  6. 6.

    R.W. Buckman, JOM 52, 40–41 (2000)

    CAS  Article  Google Scholar 

  7. 7.

    K.J. Leonard, J.T. Busby, S.J. Zinkle, J. Nucl. Mater. 366, 336–352 (2007)

    CAS  Article  Google Scholar 

  8. 8.

    V.B. Voitovich, V.A. Lavrenko, V.M. Adejev, E.I. Golovko, Oxid. Metals 43, 509–526 (1995)

    CAS  Article  Google Scholar 

  9. 9.

    J.A.H. De Pruneda, Reusable crucible for containing corrosive liquids, U.S. Patent 5383981 (1995)

  10. 10.

    N. Alangi, J. Mukherjee, P. Anupama, M.K. Verma, Y. Chakravarthy, P.V.A. Padmanabhan, A.K. Das, L.M. Gantayet, J. Nuclear Mater. 410, 39–45 (2011)

    CAS  Article  Google Scholar 

  11. 11.

    B.H. Eckstein, R. Forman, J. Appl. Phys. 33, 82–87 (1962)

    CAS  Article  Google Scholar 

  12. 12.

    W.F. Brizes, J. Nuclear Mater. 26, 227–231 (1968)

    CAS  Article  Google Scholar 

  13. 13.

    D. Cotton, P. Jacquet, S. Faure, V. Vignal, Mater. Chem. Phys. 192, 170–180 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    L. Carette, P. Jacquet, D. Cotton, V. Vignal, S. Faure, Appl. Surf. Sci. 467, 84–88 (2019)

    Article  Google Scholar 

  15. 15.

    A. Raveh, A. Danon, J. Hayon, A. Rubinshtein, R. Shneck, J.E. Klemberg-Sapieha, L. Martinu, Thin Solid Films 392, 56–64 (2001)

    CAS  Article  Google Scholar 

  16. 16.

    M. Desmaison-Brut, N. Alexandre, J. Desmaison, J. Eur. Ceram. Soc. 17, 1325–1334 (1997)

    CAS  Article  Google Scholar 

  17. 17.

    H. Xiang, Y. Xu, L. Zhang, L. Cheng, Scripta Mater. 55, 339–342 (2006)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Suh, W. Chen, S. Maeng, S. Gu, R.A. Levy, H. Thridandam, Thin Solid Films 518, 5452–5456 (2010)

    CAS  Article  Google Scholar 

  19. 19.

    L. López-de-la-Torre, B. Winkler, J. Schreuer, K. Knorr, M. Avalos-Borja, Solid State Commun. 134, 245–250 (2005)

    Article  Google Scholar 

  20. 20.

    F. Rezaei, M.G. Kakroudi, V. Shahedifar, N.P. Vafa, M. Golrokhsari, Ceram. Int. 43, 3489–3494 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    A. Nino, T. Hirabara, S. Sugiyama, H. Taimatsu, Int. J. Refract. Met. H. 52, 203–208 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    Y.J. Chen, J.B. Li, Q.M. Wei, H.Z. Zhai, J. Cryst. Growth 224, 244–250 (2001)

    CAS  Article  Google Scholar 

  23. 23.

    E. Khaleghi, Y.-S. Lin, M.A. Meyers, E.A. Olevsky, Scripta Mater. 63, 577–580 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    B. Wang, N. De Leon, C.R. Weinberger, G.B. Thompson, Acta Mater. 61, 3914–3922 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    L. Liu, H. Liu, F. Ye, Z. Zhang, Y. Zhou, Ceram. Int. 38, 4707–4713 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    D.J. Rowcliffe, G. Thomas, Mater. Sci. Eng. 18, 231–238 (1975)

    CAS  Article  Google Scholar 

  27. 27.

    A.L. Bowman, J. Phys. Chem. 65, 1596–1598 (1960)

    Article  Google Scholar 

  28. 28.

    R. Saha, W.D. Nix, Acta Mater. 50, 23–38 (2002)

    CAS  Article  Google Scholar 

  29. 29.

    W.D. Nix, Mater. Sci. Eng. A 234–236, 37–44 (1997)

    Article  Google Scholar 

  30. 30.

    M.J. Mayo, R.W. Siegel, W.D. Nix, J. Mater. Res. 5, 1073–1082 (1990)

    CAS  Article  Google Scholar 

  31. 31.

    C. Kim, G. Gottstein, D.S. Grummon, Acta Metall. Mater. 42, 2291–2301 (1994)

    CAS  Article  Google Scholar 

  32. 32.

    K. Huang, Y. Fu-liang, C. Li-xue, M.A. Kai, G.U.O. Lei, Surf. Technol. 42, 107–111 (2013)

  33. 33.

    P.J. Burnett, D.S. Rickerby, Thin Solid Films 154, 403–416 (1987)

    CAS  Article  Google Scholar 

  34. 34.

    P.A. Steinmann, Y. Tardy, H.E. Hintermann, Thin Solid Films 154, 333–349 (1987)

    CAS  Article  Google Scholar 

  35. 35.

    Y. Xie, H.M. Hawthorne, Surf. Coat. Tech. 141, 15–25 (2001)

    CAS  Article  Google Scholar 

  36. 36.

    J. Stallard, S. Poulat, D.G. Teer, Tribol. Int. 39, 159–166 (2006)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key basic research development project of the Ministry of science and technology of China (Grant No. 2012CB619504). The authors are grateful to other participants of the project for their cooperation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di, C., Yan, X., Lv, X. et al. Effect of Vacuum Carburizing Time on Microstructure and Mechanical Properties of Tantalum Carbide Layer. Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00934-z

Download citation

Keywords

  • Vacuum carburization
  • Mechanical property
  • Nanoindentation
  • Adhesion strength
  • Friction and resistance