Synergistic Enhancement of the Strength-Ductility for Stir Casting SiCp/2024Al Composites by Two-Step Deformation

Abstract

The 10 μm 10 vol% SiCp/2024Al composites sheet was successfully fabricated by semi-solid stir casting followed with two-step deformation (extrusion and rolling). The two-step thermal deformation solves the sheet rolling formability of the SiCp/2024Al composites produced by stir casting. Compared with the SiCp/2024Al composites prepared by traditional powder metallurgy, this paper innovatively studied the synergistic enhancement between CuAl2 phase and SiCp on the mechanical properties. The result shows that the two-step deformation can significantly improve the uniformity of the distribution of SiCp and CuAl2 phases. At the same time, the average size of the SiCp and CuAl2 phase decreases after the two-step deformation. During the hot extrusion, SiCp has an obvious hindrance to the refinement of the CuAl2 phase. Moreover, the SiCp/2024Al composites sheet exhibits excellent yield strength (295 MPa), ultimate tensile strength (489 MPa), and elongation (10.42%). The performance improvement of SiCp/2024Al after two-step thermal deformation is mainly attributed to the improved interface bonding strength of SiCp-2024 Al matrix, the refined SiCp and the more uniform distribution of SiCp.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    N. Chawla, Y.-L. Shen, Adv. Eng. Mater. 3(6), 357–370 (2001)

    CAS  Article  Google Scholar 

  2. 2.

    R. Arunachalam, P.K. Krishnan, R. Muraliraja, J. Manuf. Process. 42, 213–245 (2019)

    Article  Google Scholar 

  3. 3.

    K. Shirvanimoghaddam, S.U. Hamim, M.K. Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J.P. Davim, M. Naebe, Compos. Part A Appl. S. 92, 70–96 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    B.S. Yigezu, M.M.P.K. Jha, J. Miner. Mater. Char. Eng. 1, 124–130 (2013)

    CAS  Google Scholar 

  5. 5.

    O.V. Rofman, A.V. Mikhaylovskaya, A.D. Kotov, A.S. Prosviryakov, V.K. Portnoy, Mater. Sci. Eng. A 739, 235–243 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    M.A. Taha, A.M. El-Sabbagh, M. Soliman, H. Palkowski, Materialwiss. Werkst. 44(11), 914–917 (2013)

    Article  Google Scholar 

  7. 7.

    M.A. Taha, N.A. El-Mahallawy, A.M. El-Sabbagh, J. Mater. Process. Tech. 202(1–3), 380–385 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    O.V. Rofman, A.V. Mikhaylovskaya, A.D. Kotov, A.G. Mochugovskiy, A.K. Mohamed, V.V. Cheverikin, M.P. Short, Mater. Sci. Eng. A 790, 139697 (2020)

    CAS  Article  Google Scholar 

  9. 9.

    J.W. Kang, C.J. Wang, K.K. Deng, K.B. Nie, Y. Bai, W.J. Li, J. Alloy. Compd. 720, 196–206 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    L.A. Dobrzański, A. Włodarczyk, M. Adamiak, J. Mater. Process. Tech. 175(1), 186–191 (2006)

    Article  Google Scholar 

  11. 11.

    X.S. Sun, C.J. Wang, K.K. Deng, K.B. Nie, X.C. Zhang, J. Alloy. Compd. 732, 328–335 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    S.M.R. Mousavi Abarghouie, S.M.S. Reihani, Mater. Design 31(5), 2368–2374 (2010)

    CAS  Article  Google Scholar 

  13. 13.

    K.K. Deng, K. Wu, X.J. Wang, Y.W. Wu, X.S. Hu, M.Y. Zheng, W.M. Gan, H.G. Brokmeier, Mater. Sci. Eng. A 527(6), 1630–1635 (2010)

    Article  Google Scholar 

  14. 14.

    K.K. Deng, X.J. Wang, C.J. Wang, J.Y. Shi, X.S. Hu, K. Wu, Mater. Sci. Eng. A 553, 74–79 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    B. Dutta, M.K. Surappa, Compos. Part A Appl. S. 29(5–6), 565–573 (1998)

    Article  Google Scholar 

  16. 16.

    Q.S. Dong, A. Howells, D.J. Lloyd, M. Gallerneault, V. Fallah, Effect of solidification cooling rate on kinetics of continuous/discontinuous Al3(Sc,Zr) precipitation and the subsequent age-hardening response in cold-rolled AlMgSc(Zr) sheets. Mater. Sci. Eng. (2019). 

  17. 17.

    N. Haghdadi, A. Zarei-Hanzaki, A.A. Roostaei, A.R. Hemmati, Mater. Design 43, 419–425 (2013)

    CAS  Article  Google Scholar 

  18. 18.

    G. Meyrick, G.W. Powell, Annu. Rev. Mater. Sci. 3, 327–362 (1973)

    CAS  Article  Google Scholar 

  19. 19.

    W. Guo, Y. Yi, S. Huang, H. He, J. Fang, Met. Mater. Int. 26, 56–68 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    B.W. Xiong, Z.F. Xu, Q.S. Yan, B.P. Lu, C. Cai, J. Alloy. Compd. 509, 1187–1191 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    L.J. Zhang, F. Qiu, J.G. Wang, Q.C. Jiang, Mater. Sci. Eng. A 626, 338–341 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    H. Su, W.L. Gao, C. Mao, H. Zhang, H.B. Liu, J. Lu, Z. Lu, Chin. J. Nonferrous Met. 20, 217 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    K. Sukumaran, K.K. Ravikumar, S.G.K. Pillai, T.P.D. Rajan, M. Ravi, R.M. Pillai, B.C. Pai, Mater. Sci. Eng. A 490, 235–241 (2008)

    Article  Google Scholar 

  24. 24.

    C. Sun, M. Song, Z. Wang, Y. He, J. Mater. Eng. Perform. 20, 1606–1612 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    J.J. Sha, Z.Z. Lv, G.Z. Lin, J. Dai, C.L. Yan, Mater. Lett. 262, 127024 (2019)

    Article  Google Scholar 

  26. 26.

    J. Zhu, W. Jiang, G. Li, F. Guan, Y. Yu, Z. Fan, J. Mater. Process. Tech. 283, 116699 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    S. Lü, P. Xiao, D. Yuan, K. Hu, S. Wu, J. Mater. Sci. Technol. 34, 1609–1617 (2018)

    Article  Google Scholar 

  28. 28.

    Y. Afkham, S.M. Fattahalhoseini, K.R. Azari, C. Avani, N. Mehrooz, M.R. Taherzadeh, Silicon 10, 2353–2359 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, B. Niroumand, J. Mater. Eng. Perform. 21, 1249–1253 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    N. Beigi Khosroshahi, R. Taherzadeh Mousavian, R. Azari Khosroshahi, D. Brabazon, Mater. Design 83, 678–688 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    L.J. Zhang, F. Qiu, J.G. Wang, H.Y. Wang, Q.C. Jiang, Mater. Sci. Eng. A 637, 70–74 (2015)

    Article  Google Scholar 

  32. 32.

    C.V. Srivastava, A. Schneider, V. Uhlenwinkel, K. Bauckhage, Mater. Sci. Eng. A 412, 19–26 (2005)

    Article  Google Scholar 

  33. 33.

    R. Casati, M. Vedani, Metals 4, 65–83 (2014)

    Google Scholar 

  34. 34.

    M. Shayan, B. Eghbali, B. Niroumand, Mater. Sci. Eng. A 756, 484–491 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    V.C. Nardone, K.M. Prewo, Scripta Metall. 20, 43–48 (1986)

    CAS  Article  Google Scholar 

  36. 36.

    W.S. Miller, F.J. Humphreys, Scripta Metall. Mater. 25, 33–38 (1991)

    CAS  Article  Google Scholar 

  37. 37.

    H. Sekine, C. Rong, Composites 26, 183–188 (1995)

    CAS  Article  Google Scholar 

  38. 38.

    Z. Zhang, D.L. Chen, Mater. Sci. Eng. A 483484, 148–152 (2008)

    Article  Google Scholar 

  39. 39.

    C. Lewis, P. Withers, Acta. Metall. Mater. 43, 3685–3699 (1995)

    CAS  Article  Google Scholar 

  40. 40.

    W. Liang, W.J. Li, F.J. Xu, H. Wang, Mater. Sci. Eng. A 647, 15–27 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “National Natural Science Foundation of China” (Grants. 51771128, 51771129, and 52001223), Shanxi province science and technology major projects (Grant No. 20181101008), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and the special fund project for guiding local science and technology development by the central government (YDZX20191400002734).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kun-kun Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, Fx., Deng, Kk., Wang, Cj. et al. Synergistic Enhancement of the Strength-Ductility for Stir Casting SiCp/2024Al Composites by Two-Step Deformation. Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00928-x

Download citation

Keywords

  • Metal-matrix composites
  • Stir-casting
  • Aluminum alloy
  • Deformation
  • Al2Cu particles
  • Mechanical properties