High-Temperature Oxidation Behavior of NiCoCrAlY Coatings Deposited by Laser Cladding on 304 Stainless Steel

Abstract

To improve the high-temperature resistance of the key hot-end parts of the steam turbine, NiCoCrAlY coatings were deposited on a 304 stainless steel substrate by laser cladding. The microstructure and high-temperature oxidation behavior of the NiCoCrAlY coatings were analyzed. The results showed that the NiCoCrAlY coatings contained γ/γ′ and β phases, and the microstructure was mainly composed of elongated columnar crystals. In addition, after 100 h of oxidation at three different oxidation temperatures (750, 850 and 950 °C), the coatings showed a relatively low oxidation rate, which was approximately a quarter of the oxidation rate of the substrate. At the same time, the protective Cr2O3 scales were formed on the coating surface. When the oxidation temperature was 850 °C, the FeCr2O4 spinel formed and internal oxidation zone appeared, when the oxidation temperature reached 950 °C, the FeCr2O4 spinel gathered in the local area on the surface of the Cr2O3 scale and the internal oxidation was aggravated. In other words, as the oxidation temperature increased, the Fe element in the matrix formed the FeCr2O4 spinel, which accelerated the consumption of Cr element in the coatings and reduced the overall oxidation resistance of the NiCoCrAlY coatings.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. 1.

    H. Wärner, M. Calmunger, G. Chai, J. Polák, R. Petráš, M. Heczko, T. Kruml, S. Johansson, J. Moverare, Procedia Struct. Integr. 13, 843–848 (2018)

    Article  Google Scholar 

  2. 2.

    Q.Z. Cui, S.M. Seo, Y.S. Yoo, Z. Lu, S.W. Myoung, Y.G. Jung, U. Paik, Surf. Coat. Technol. 284, 69–74 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    W. Uczak de Goes, N. Markocsan, M. Gupta, R. Vaßen, T. Matsushita, K. Illkova, Surf. Coat. Technol. 396, 125950 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    V.K. Tolpygo, D.R. Clarke, Acta Mater. 52, 5115–5127 (2004)

    CAS  Google Scholar 

  5. 5.

    I. Gurrappa, A. SambasivaRao, Surf. Coat. Technol. 201, 3016–3029 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.M. Dorvaux, M. Poulain, R. Mévrel, M. Caliez, Aerosp. Sci. Technol. 7, 73–80 (2003)

    CAS  Article  Google Scholar 

  7. 7.

    E. Hejrani, D. Sebold, W.J. Nowak, G. Mauer, D. Naumenko, R. Vaßen, W.J. Quadakkers, Surf. Coat. Technol. 313, 191–201 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    A. Feizabadi, M. SalehiDoolabi, S.K. Sadrnezhaad, M. Rezaei, J. Alloys Compd. 746, 509–519 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    B.Y. Zhang, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 406, 99–109 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    Y.J. Xie, M.C. Wang, Surf. Coat. Technol. 201, 3564–3570 (2006)

    CAS  Article  Google Scholar 

  11. 11.

    G. Mauer, M.O. Jarligo, D.E. Mack, R. Vaßen, J. Therm. Spray Technol. 22, 646–658 (2013)

    Article  Google Scholar 

  12. 12.

    P. Song, D. Naumenko, R. Vassen, L. Singheiser, W.J. Quadakkers, Surf. Coat. Technol. 221, 207–213 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    P. Richer, M. Yandouzi, L. Beauvais, B. Jodoin, Surf. Coat. Technol. 204, 3962–3974 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    C. Bezençon, A. Schnell, W. Kurz, Scr. Mater. 49, 705–709 (2003)

    Article  Google Scholar 

  15. 15.

    Y.N. Wu, G. Zhang, Z.C. Feng, B.C. Zhang, Y. Liang, F.J. Liu, Surf. Coat. Technol. 138, 56–60 (2001)

    CAS  Article  Google Scholar 

  16. 16.

    Y.X. Li, P.F. Zhang, P.K. Bai, L.Y. Wu, B. Liu, Z.Y. Zhao, Surf. Coat. Technol. 334, 142–149 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    Y.X. Li, K.Q. Su, P.K. Bai, L.Y. Wu, Mater. Charact. 159, 110023 (2020)

    Article  Google Scholar 

  18. 18.

    J.C. Pereira, J.C. Zambrano, M.J. Tobar, A. Yañez, V. Amigó, Surf. Coat. Technol. 270, 243–248 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    K. Partes, C. Giolli, F. Borgioli, U. Bardi, T. Seefeld, F. Vollertsen, Surf. Coat. Technol. 202, 2208–2213 (2008)

    CAS  Article  Google Scholar 

  20. 20.

    H.M. Wang, J.S. Jiang, Z.Y. Huang, Y. Chen, K. Liu, Z.W. Lu, J.Q. Qi, F. Li, D.W. He, T.C. Lu, Q.Y. Wang, J. Alloys Compd. 671, 527–531 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    N.M. Martyak, K. Drake, J. Alloys Compd. 312, 30–40 (2000)

    CAS  Article  Google Scholar 

  22. 22.

    C. Kaplin, M. Brochu, Appl. Surf. Sci. 301, 258–263 (2014)

    CAS  Article  Google Scholar 

  23. 23.

    L. Luo, H. Zhang, Y. Chen, C. Zhao, S. Alavi, F. Guo, X. Zhao, P. Xiao, Corros. Sci. 145, 262–270 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    H. Barekatain, S.M. MousaviKhoei, Surf. Coat. Technol. 384, 125339 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    C. Wagner, Corros. Sci. 9, 91–109 (1969)

    CAS  Article  Google Scholar 

  26. 26.

    L.Z. Du, W.T. Zhang, W.G. Zhang, T.T. Zhang, H. Lan, C.B. Huang, Surf. Coat. Technol. 298, 7–14 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    S. Cui, Q. Miao, W. Liang, B. Li, Appl. Surf. Sci. 428, 781–787 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    H.J. Xie, Y.L. Cheng, S.X. Li, J.H. Cao, L. Cao, Trans. Nonferrous Met. Soc. China (English Ed) 27, 336–351 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    G. Moskal, D. Niemiec, B. Chmiela, P. Kałamarz, T. Durejko, M. Ziętala, T. Czujko, Surf. Coat. Technol. 387, 125317 (2020)

    CAS  Article  Google Scholar 

  30. 30.

    J.J. Liang, Y.S. Liu, J.G. Li, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 35, 344–350 (2019)

    Article  Google Scholar 

  31. 31.

    H. Peng, H.B. Guo, R. Yao, J. He, S.K. Gong, Vacuum 85, 627–633 (2010)

    CAS  Article  Google Scholar 

  32. 32.

    A.H. Heuer, D.B. Hovis, J.L. Smialek, B. Gleeson, J. Am. Ceram. Soc. 94, 2698 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    J. Cai, C.Z. Gao, P. Lv, C.L. Zhang, Q.F. Guan, J.Z. Lu, X.J. Xu, J. Alloys Compd. 784, 1221–1233 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Natural Science Foundation of China (No. U1810112) and Taiyuan Science and Technology Project (No. 170205) for the financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuxin Li or Peikang Bai.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Nie, J., Yang, Y. et al. High-Temperature Oxidation Behavior of NiCoCrAlY Coatings Deposited by Laser Cladding on 304 Stainless Steel. Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00927-y

Download citation

Keywords

  • Laser cladding
  • NiCoCrAlY coatings
  • Microstructure
  • Oxidation behavior