Effect of Microstructural Features on the High-Cycle Fatigue Behavior of CoCrFeMnNi High-Entropy Alloys Deformed at Room and Cryogenic Temperatures

Abstract

In this study, we examined the effect of deformation twins and dislocation cell structures on the fatigue properties of the CoCrFeMnNi high-entropy alloy using rotational bending fatigue tests. The dislocation cell structures and deformation twins were generated by prestraining the CoCrFeMnNi high-entropy alloy at room temperature (27 °C) and a cryogenic temperature (− 196 °C), respectively. To eliminate the effect of different material strengths on fatigue behavior, the tensile strengths of the specimens evaluated in the fatigue tests were kept similar by controlling the prestraining under room and cryogenic temperatures. The results of the rotational bending fatigue tests revealed that the CoCrFeMnNi high-entropy alloy prestrained at room temperature exhibited higher fatigue resistance and fatigue limit than the specimen prestrained at a cryogenic temperature. A small quantity of large micro-voids was formed at the triple junction of the grain boundaries in the specimen prestrained at room temperature, whereas a large quantity of small micro-voids was formed in the region where the deformation twins intersected the grain boundaries in the specimen prestrained at a cryogenic temperature. Therefore, it is concluded that the different aspects of micro-void formation affected the crack initiation and, consequently, the fatigue properties of the room and cryogenic temperature-prestrained alloys.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J.-W. Yeh, S.K. Chen, S.U.J. Lin, J.-Y. Gan, T.-S. Chin, T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299–303 (2004)

    CAS  Google Scholar 

  2. 2.

    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1–93 (2014)

    Google Scholar 

  3. 3.

    M.-H. Tsai, J.-W. Yeh, Mater. Res. Lett. 2, 107–123 (2014)

    Google Scholar 

  4. 4.

    J.-W. Yeh, JOM 65, 1759–1771 (2013)

    CAS  Google Scholar 

  5. 5.

    Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Corros. Sci. 47, 2257–2279 (2005)

    CAS  Google Scholar 

  6. 6.

    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    CAS  Google Scholar 

  7. 7.

    J.I. Lee, H.S. Oh, J.H. Kim, E.S. Park, Korean J. Met. Mater. 55, 1–9 (2017)

    CAS  Google Scholar 

  8. 8.

    S.I. Hong, J. Moon, S.K. Hong, H.S. Kim, Mater. Sci. Eng. A 682, 569–576 (2017)

    CAS  Google Scholar 

  9. 9.

    B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213–218 (2004)

    Google Scholar 

  10. 10.

    J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62, 105–113 (2014)

    CAS  Google Scholar 

  11. 11.

    N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. 687, 59–71 (2016)

    CAS  Google Scholar 

  12. 12.

    N. Stepanov, D.G. Shaysultanov, N. Yurchenko, M. Klimova, S. Zherebtsov, G. Salishchev, Mater. Sci. Forum 879, 1853–1858 (2016)

    Google Scholar 

  13. 13.

    S.H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S.J. Hong, H.S. Kim, J. Alloys Compd. 698, 591–604 (2017)

    CAS  Google Scholar 

  14. 14.

    M. Gabriele Poletti, G. Fiore, F. Gili, D. Mangherini, L. Battezzati, Mater. Des. 115, 247–254 (2017)

    Google Scholar 

  15. 15.

    K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, J. Alloys Compd. 728, 1235–1238 (2017)

    CAS  Google Scholar 

  16. 16.

    A. Shafiei, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00655-3

  17. 17.

    Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00565-z

  18. 18.

    K.R. Lim, H.J. Kwon, J.-H. Kang, J.W. Won, Y.S. Na, Mater. Sci. Eng. A 771, 138638 (2020)

    CAS  Google Scholar 

  19. 19.

    A.J. Zaddach, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 636, 373–378 (2015)

    CAS  Google Scholar 

  20. 20.

    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743–5755 (2013)

    CAS  Google Scholar 

  21. 21.

    J.W. Won, S. Lee, S.H. Park, M. Kang, K.R. Lim, C.H. Park, Y.S. Na, J. Alloys Compd. 742, 290–295 (2018)

    CAS  Google Scholar 

  22. 22.

    G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118, 152–163 (2016)

    CAS  Google Scholar 

  23. 23.

    J.W. Won, J.H. Lee, J.S. Jeong, S.-W. Choi, D.J. Lee, J.K. Hong, Y.-T. Hyun, Scr. Mater. 178, 94–98 (2020)

    CAS  Google Scholar 

  24. 24.

    S.-W. Choi, J.W. Won, S. Lee, J.K. Hong, Y.S. Choi, Mater. Sci. Eng. A 738, 75–80 (2018)

    CAS  Google Scholar 

  25. 25.

    ISO, ISO 1143:2010 Metallic Mterials—Rotary Bar Bending Fatigue Testing, BSI (2010)

  26. 26.

    M.D. Chapetti, H. Miyata, T. Tagawa, T. Miyata, M. Fujioka, Mater. Sci. Eng. A 381, 331–336 (2004)

    Google Scholar 

  27. 27.

    M.R. Mitchell, Fatigue and Fracture (ASM International, Materials Park, 1996)

    Google Scholar 

  28. 28.

    Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang, J. Mater. Sci. Technol. 35, 334–340 (2019)

    Google Scholar 

  29. 29.

    Y.-K. Kim, G.-S. Ham, H.S. Kim, K.-A. Lee, Intermetallics 111, 106486 (2019)

    CAS  Google Scholar 

  30. 30.

    S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  31. 31.

    M. Liu, Z. Liu, S. Bai, P. Xia, P. Ying, S. Zeng, Int. J. Fatigue 84, 104–112 (2016)

    CAS  Google Scholar 

  32. 32.

    H. Mughrabi, Acta Mater. 61, 1197–1203 (2013)

    CAS  Google Scholar 

  33. 33.

    R. Liu, Z.J. Zhang, P. Zhang, Z.F. Zhang, Acta Mater. 83, 341–356 (2015)

    CAS  Google Scholar 

  34. 34.

    R.H. Li, Z.J. Zhang, P. Zhang, Z.F. Zhang, Acta Mater. 61, 5857–5868 (2013)

    CAS  Google Scholar 

  35. 35.

    Z.F. Zhang, Z.G. Wang, Mater. Sci. Eng. A 284, 285–291 (2000)

    Google Scholar 

  36. 36.

    P. Zhang, S. Qu, Q.Q. Duan, S.D. Wu, S.X. Li, Z.G. Wang, Z.F. Zhang, Philos. Mag. 91, 229–249 (2011)

    CAS  Google Scholar 

  37. 37.

    L.L. Li, Z.J. Zhang, P. Zhang, J.B. Yang, Z.F. Zhang, Acta Mater. 120, 120–129 (2016)

    CAS  Google Scholar 

  38. 38.

    B. Wang, P. Zhang, Q.Q. Duan, Z.J. Zhang, H.J. Yang, J.C. Pang, Y.Z. Tian, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 679, 258–271 (2017)

    CAS  Google Scholar 

  39. 39.

    S. Hashimoto, H. Ikehata, A. Kato, H. Kato, Y. Kaneko, Interface Sci. 7, 159–171 (1999)

    CAS  Google Scholar 

  40. 40.

    L. Llanes, C. Laird, Mater. Sci. Eng. A 157, 21–27 (1992)

    Google Scholar 

  41. 41.

    S. Qu, P. Zhang, S.D. Wu, Q.S. Zang, Z.F. Zhang, Scr. Mater. 59, 1131–1134 (2008)

    CAS  Google Scholar 

  42. 42.

    M.D. Sangid, H.J. Maier, H. Sehitoglu, Int. J. Plast. 27, 801–821 (2011)

    Google Scholar 

  43. 43.

    B. Wang, Z.J. Zhang, C.W. Shao, Q.Q. Duan, J.C. Pang, H.J. Yang, X.W. Li, Z.-F. Zhang, Metall. Mater. Trans. A 46, 3317–3323 (2015)

    CAS  Google Scholar 

  44. 44.

    A.l. Thompson, Acta Metall. 20, 1085–1094 (1972)

    CAS  Google Scholar 

  45. 45.

    A.C. Lewis, K.A. Jordan, A.B. Geltmacher, Metall. Mater. Trans. A 39, 1109–1117 (2008)

    Google Scholar 

  46. 46.

    I.P. Semenova, A.V. Polyakov, V.V. Polyakova, Y. Huang, R.Z. Valiev, T.G. Langdon, Adv. Eng. Mater. 18, 2057–2062 (2016)

    CAS  Google Scholar 

  47. 47.

    R. Naseri, H. Hiradfar, M. Shariati, M. Kadkhodayan, Arch. Civ. Mech. Eng. 18, 755–767 (2018)

    Google Scholar 

  48. 48.

    A.S. Hamada, L.P. Karjalainen, A. Ferraiuolo, J. Gil Sevillano, F. de las Cuevas, G. Pratolongo, M. Reis, Metall. Mater. Trans. A 41, 1102–1108 (2010)

    Google Scholar 

  49. 49.

    D.-H. Jeong, S.-G. Lee, W.-K. Jang, J.-K. Choi, Y.-J. Kim, S. Kim, Metall. Mater. Trans. A 44, 4601–4612 (2013)

    CAS  Google Scholar 

  50. 50.

    H. Sung, D. Jeong, T. Park, J. Lee, S. Kim, Met. Mater. Int. 22, 755–763 (2016)

    Google Scholar 

  51. 51.

    M. Abareshi, E. Emadoddin, Mater. Des. 32, 5099–5105 (2011)

    CAS  Google Scholar 

  52. 52.

    M.A. Islam, S. Chen, Y. Tomota, J. Mater. Eng. Perform. 16, 248–253 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science, ICT and Future Planning (Republic of Korea) [Grant No. NRF-2016M3D1A1023534].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Young Sang Na or Yoon Suk Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, G.T., Won, J.W., Lim, K.R. et al. Effect of Microstructural Features on the High-Cycle Fatigue Behavior of CoCrFeMnNi High-Entropy Alloys Deformed at Room and Cryogenic Temperatures. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00786-7

Download citation

Keywords

  • High-entropy alloy
  • CoCrFeMnNi
  • Deformation twin
  • Dislocation cell structure
  • High cycle fatigue