Effects of Annealing Treatment on the Anisotropy Behavior of Cold-Rolled High-Manganese Austenite Stainless Steels

Abstract

High-Mn (over 24 wt%) austenitic steels recently have been developed with excellent mechanical properties such as high strength and ductility at very low temperatures for cryogenic application. Especially, cold-rolling process is and effective method to increased yield and tensile strength of high-Mn steel when making products. In our previous work, we have investigated the correlation between microstructure and mechanical properties due to recrystallization without considering the characteristics of the cold-rolling direction of high-Mn steels. In this study, we evaluated the effects of anisotropic behaviors on the heat treatment of cold-rolling high-Mn steels. Despite the heat treatment, differences between transverse and longitudinal direction in the cold-rolled conditions generally affected the recrystallized microstructure. Such anisotropic behaviors caused changes in mechanical properties such as tensile and Charpy impact test, as microstructure along cold-rolling direction.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Reference

  1. 1.

    P. Mallick, N. Tewary, S. Ghosh, P. Chattopadhyay, Effect of cryogenic deformation on microstructure and mechanical properties of 304 austenitic stainless steel. Mater. Char. 133, 77–86 (2017)

    CAS  Google Scholar 

  2. 2.

    D. Li, Y. Zhang, The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24–28 (2016)

    CAS  Google Scholar 

  3. 3.

    A. Kern, U. Schriever, J. Stumpfe, Development of 9% nickel steel for LNG applications. Steel. Res. Int. 78, 189–194 (2007)

    CAS  Google Scholar 

  4. 4.

    J.K. Choi, S.-G. Lee, Y.-H. Park, I.-W. Han, J. Morris Jr., High manganese austenitic steel for cryogenic applications. In: Proc. 22th. Int. Offshore and Polar Eng, Conf, Rhodes, Greece, 29–35 (2012)

  5. 5.

    I.W. Han, B.K. Lee, J.K. Choi, S.H. Park, C.Y. Kang, Microstructure and mechanical properties of cryogenic high-manganese steel weld metal. In: Proc. 23th. Int. Offshore and Polar Eng. Conf, Anchorage, Alaska, (2013)

  6. 6.

    M. Choi, J. Lee, H. Nam, N. Kang, M. Kim, D. Cho, Tensile and microstructural characteristics of Fe-24Mn steel welds for cryogenic applications. Met. Mater. Int. 26, 240–247 (2020)

    CAS  Google Scholar 

  7. 7.

    N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki, Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels. Acta Mater. 58, 895–903 (2010)

    CAS  Google Scholar 

  8. 8.

    P. Kusakin, R. Kaibyshev, High-Mn twinning-induced plasticity steels: microstructure and mechanical properties. Rev. Adv. Mater. Sci. 44, 326–360 (2016)

    CAS  Google Scholar 

  9. 9.

    I. Gutiérrez-Urrutia, D. Raabe, Microbanding mechanism in an Fe-Mn-C high-Mn twinning-induced plasticity steel. Scripta Mater. 69, 53–56 (2013)

    Google Scholar 

  10. 10.

    S. Curtze, V.-T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy temperature and strain rate. Acta mater. 58, 5129–5141 (2010)

    CAS  Google Scholar 

  11. 11.

    Y. Tian, O.I. Gorbatov, A. Borgenstam, A.V. Ruban, P. Hedström, Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy. Metall. Mater. Trans. A 48, 1–7 (2017)

    CAS  Google Scholar 

  12. 12.

    R. Xiong, H. Peng, H. Si, W. Zhang, Y. Wen, Thermodynamic calculation of stacking fault energy of the Fe-Mn-Si-C high manganese steels. Mater. Sci. Eng. A. 598, 376–386 (2014)

    CAS  Google Scholar 

  13. 13.

    N. Tewary, S. Ghosh, S. Bera, D. Chakrabarti, S. Chatterjee, Influence of cold rolling on microstructure, texture and mechanical properties of low carbon high Mn TWIP steel. Mater. Sci. Eng. A. 615, 405–415 (2014)

    CAS  Google Scholar 

  14. 14.

    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid. St. M. 15, 141–168 (2011)

    CAS  Google Scholar 

  15. 15.

    Y. Ma, Z. Du, X. Cui, J. Cheng, G. Liu, T. Gong, H. Liu, X. Wang, Y. Chen, Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets. Prog. Natur. Sci. Mater. Int. 28, 711–717 (2018)

    CAS  Google Scholar 

  16. 16.

    J.-Y. Lee, Y.-S. Yun, B.-C. Suh, N.-J. Kim, W.-T. Kim, D.-H. Kim, Comparison of static recrystallization behavior in hot rolled Mg–3Al–1Zn and Mg–3Zn–0.5 Ca sheets. J. Alloy. Compd. 589, 240–246 (2014)

    CAS  Google Scholar 

  17. 17.

    J.J. Moverare, M. Oden, Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel. Metall. Mater. Trans. A 33, 57–71 (2002)

    Google Scholar 

  18. 18.

    M. Lobanov, A. Redikul’tsev, G. Rusakov, S. Danilov, Interrelation between the orientations of deformation and recrystallization in hot rolling of anisotropic electrical steel. Met. Sci. Heat Treat. 57, 492–497 (2015)

    CAS  Google Scholar 

  19. 19.

    Y. Bai, Y. Momotani, M. Chen, A. Shibata, N. Tsuji, Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. Mater. Sci. Eng. A. 651, 935–944 (2016)

    CAS  Google Scholar 

  20. 20.

    R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura. K. Kunishige, Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scripta Mater. 59, 963–966 (2008)

    CAS  Google Scholar 

  21. 21.

    C. Haase, L.A. Barrales-Mora, F. Roters, D.A. Molodov, G. Gottstein, Applying the texture analysis for optimizing thermomechanical treatment of high manganese twinning-induced plasticity steel. Acta Mater. 80, 327–340 (2014)

    CAS  Google Scholar 

  22. 22.

    S. Pramanik, A.A. Saleh, E.V. Pereloma. A.A. Gazder, Effect of isochronal annealing on the microstructure, texture and mechanical properties of a cold-rolled high manganese steel. Mater. Char. 144, 66–76 (2018)

    CAS  Google Scholar 

  23. 23.

    J.-M. Jang, S.-J. Kim, N.H. Kang, K.-M. Cho, D.-W. Suh, Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel. Met. Mater. Int. 15, 909–916 (2009)

    CAS  Google Scholar 

  24. 24.

    Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, D. Molodov, Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel. Mater. Char. 112, 180–187 (2016)

    CAS  Google Scholar 

  25. 25.

    A. Kisko, A. Hamada, J. Talonen, D. Porter, L. Karjalainen, Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels. Mater. Sci. Eng. A. 657, 359–370 (2016)

    CAS  Google Scholar 

  26. 26.

    Z.C. Yanushkevich, D. Molodov, A. Belyakov, R. Kaibyshev, Recrystallization kinetics of an austenitic high-manganese steel subjected to severe plastic deformation. Russ. Metall. 2016, 812–819 (2016)

  27. 27.

    P.R. Rios, F. Siciliano Jr., H.R.Z. Sandim, R.L. Plaut, A.F. Padilha, Nucleation and growth during recrystallization. Mater. Res. 8, 225–238 (2005)

    CAS  Google Scholar 

  28. 28.

    G. Casillas, A.A. Gazder, E.V. Pereloma, A.A. Saleh, Evidencing extrinsic stacking faults in twinning-induced plasticity steel. Mater. Char. 123, 275–281 (2017)

    CAS  Google Scholar 

  29. 29.

    A. Etter, T. Baudin, M. Mathon, W. Swiatnicki, R. Penelle, Stored energy evolution in both phases of a duplex steel as a function of cold rolling reduction. Scripta mater. 54, 683–688 (2006)

    CAS  Google Scholar 

  30. 30.

    W. Wang, F. Brisset, A. Helbert, D. Solas, I. Drouelle, M. Mathon, T. Baudin, Influence of stored energy on twin formation during primary recrystallization. Mater. Sci. Eng. A. 589, 112–118 (2014)

    CAS  Google Scholar 

  31. 31.

    D.N. Lee, The evolution of recrystallization textures from deformation textures. Scripta Metall. Mater. 32, 1689–1694 (1995)

    CAS  Google Scholar 

  32. 32.

    C. Haase, L.A. Barrales-Mora, Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Mater. 150, 88–103 (2018)

    CAS  Google Scholar 

  33. 33.

    Y. Lü, D.A. Molodov, G. Gottstein, Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe–Mn–C alloy. Acta Mater. 59, 3229–3243 (2011)

    Google Scholar 

  34. 34.

    T. Sabin, G. Winther, D.J. Jensen, Orientation relationships between recrystallization nuclei at triple junctions and deformed structures. Acta Mater. 51, 3999–4011 (2003)

    CAS  Google Scholar 

  35. 35.

    J. Zhang, C.-W. Zheng, D.-Z. Li, A. Multi-phase, Field Model for Static Recrystallization of Hot Deformed Austenite in a C–Mn Steel. Acta Metall. Sin. (Engl. Lett) 31, 208–215 (2018)

    CAS  Google Scholar 

  36. 36.

    Y. Xu, H. Jiao, W. Qiu, R. Misra, J. Li, Effect of cold rolling process on microstructure, texture and properties of strip cast Fe-2.6% Si steel. Mater 11, 1161 (2018)

    Google Scholar 

  37. 37.

    N. Tewary, S. Ghosh, S. Chatterjee, Effect of annealing on microstructure and mechanical behavior of cold rolled low C, high Mn TWIP steel. Int. J. Metall. Eng. 4, 12–23 (2015)

    Google Scholar 

  38. 38.

    M. Park, M.S. Kang, G.-W. Park, E.Y. Choi, H.-C. Kim, H.-S. Moon, J.B. Jeon, H. Kim, S.-H. Kwon, B. J. Kim. The effects of recrystalllization on strength and impact toughness of cold-worked high-Mn austenitic steels. Metals 9, 948 (2019)

    CAS  Google Scholar 

  39. 39.

    T. Wang, T. Zhu, J. Sun, R. Wu, M. Zhang, Influence of rolling directions on microstructure, mechanical properties and anisotropy of Mg-5Li-1Al-0.5 Y alloy. J. Magnes. Alloy. 3, 345–351 (2015)

    CAS  Google Scholar 

  40. 40.

    A. Chbihi, D. Barbier, L. Germain, A. Hazotte, M. Gouné, Interactions between ferrite recrystallization and austenite formation in high-strength steels. J. Mater. Sci. 49, 3608–3621 (2014)

    CAS  Google Scholar 

  41. 41.

    C. Slater, A. Mandal, C. Davis, The influence of segregation of Mn on the recrystallization behavior of C-Mn steels. Metall. Mater. Trans. B 50B, 1627–1636 (2019)

    Google Scholar 

  42. 42.

    H. Lee, M.C. Jo, S.S. Sohn, A. Zargaran, J.H. Ryu, N.J. Kim, S. Lee, Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation –induced TRIP mechanism. Acta. Mater. 147, 247–260 (2018)

    CAS  Google Scholar 

  43. 43.

    J. Liang, Z.Z. Zhao, D. Tang, N. Ye, S. Yang, W. Liu, Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix. Mater. Sci. Eng. A 711, 175–181 (2018)

    CAS  Google Scholar 

  44. 44.

    O. Bouaziz, S. Allain, C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater. 58, 484–487 (2008)

    CAS  Google Scholar 

  45. 45.

    J.G. Sevilano, An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel. Scripta Mater. 60, 336–339 (2009)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the R&D Program of the Korea Evaluation Institute of Industrial Technology (KEIT) as “Development of Sub-merged-Arc-Welded Pipe and Extruded Pipe made of High Manganese Steel for Cryogenic Usage in LNG Ship and Offshore Plant” (10080728).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Byung Jun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, M., Kang, M.S., Park, G. et al. Effects of Annealing Treatment on the Anisotropy Behavior of Cold-Rolled High-Manganese Austenite Stainless Steels. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00785-8

Download citation

Keywords

  • High-Mn steel
  • Cold-rolling process
  • Annealing
  • Recrystallization
  • Anisotropy behaviors