On the Influence of Temperature and Number of Passes on the Mechanical Properties of an Al–Mg Alloy Processed by Cyclic Expansion Extrusion


The influence of working temperature and number of passes on the mechanical properties of aluminium alloy, AA 5083, processed by cyclic expansion and extrusion (CEE) is discussed. The specimens were processed up-to 10 CEE passes at 200 °C, 300 °C and 400 °C. The average grain size of the starting annealed material was 84.5 ± 6.8 μm, with 39.4% being of the high-angle grain boundaries (HAGBs) type. After 8 CEE passes at 200 °C the material had an average grain size of 3.3 ± 0.6 μm and 41.3% of the grain boundaries were of the high-angle type (HAGBs). The combined effect of an increase in dislocation density and reduction in grain size as a result of CEE processing contributed to an increase in hardness and strength of the alloy. At 200 °C, the specimen exhibited uniform hardness values with a maximum improvement of 104% after 8 passes and the ultimate tensile strength had also increased by 64% compared with the unprocessed condition. However, the mechanical properties decreased in the specimens that were processed at the higher temperatures of 300 °C and 400 °C.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    J.M. García-Infanta, A.P. Zhilyaev, A. Sharafutdinov, O.A. Ruano, F. Carreño, An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al–Zn–Mg–Cu alloy processed by high-pressure torsion. J. Alloys Comp. 473, 163–166 (2009)

    Google Scholar 

  2. 2.

    R.Z. Valiev, T.G. Langdon, Developments in the use of ECAP processing for grain refinement. Rev. Adv. Mater. Sci. 13, 15–26 (2006)

    CAS  Google Scholar 

  3. 3.

    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103–189 (2000)

    CAS  Google Scholar 

  4. 4.

    A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53, 893–979 (2008)

    CAS  Google Scholar 

  5. 5.

    Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A 31, 691–701 (2000)

    Google Scholar 

  6. 6.

    S.H. Seyed Ebrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, S. Zangeneh, Investigation on microstructure and mechanical properties of Al/Al–Zn–Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater. Sci. Eng. A 718, 311–320 (2018)

    Google Scholar 

  7. 7.

    M. Richert, J. Richert, J. Zasadziński, S. Hawryłkiewicz, J. Długopolski, Effect of large deformations on the microstructure of aluminium alloys. Mater. Chem. Phys. 81, 528–530 (2003)

    CAS  Google Scholar 

  8. 8.

    N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening. Mater. Sci. Eng. A 649, 229–238 (2016)

    CAS  Google Scholar 

  9. 9.

    H. Lianxi, L. Yuping, W. Erde, Y. Yang, Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion. Mater. Sci. Eng. A 422, 327–332 (2006)

    Google Scholar 

  10. 10.

    M.R. Jandaghi, H. Pouraliakbar, M.K.G. Shiran, G. Khalaj, M. Shirazi, On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al–Mg alloy. Mater. Sci. Eng. A 657, 431–440 (2016)

    CAS  Google Scholar 

  11. 11.

    D.M. Fouad, A. Moataz, W.H. El-Garaihy, H.G. Salem, Numerical and experimental analysis of multi-channel spiral twist extrusion processing of AA5083. Mater. Sci. Eng. A 764, 138216 (2019)

    CAS  Google Scholar 

  12. 12.

    N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC). Mater. Sci. Eng. A 528, 7537–7540 (2011)

    CAS  Google Scholar 

  13. 13.

    K.A. Padmanabhan, S. Balasivanandha Prabu, On the conflicts in the experimental results concerning the mechanical properties of ultra-fine grained and nanostructured materials: effects of processing routes and experimental conditions. Mater. Sci. Forum 683, 3–54 (2011)

    CAS  Google Scholar 

  14. 14.

    J.J. Rino, S. Balasivanandha Prabu, K.A. Padmanabhan, On the influence of repetitive corrugation and straightening on the microstructure and mechanical properties of AA 8090 Al–Li alloy. Arch. Civ. Mech. Eng. 18, 280–290 (2018)

    Google Scholar 

  15. 15.

    N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effect of temperature and velocity of pressing on grain refinement in AA5083 aluminum alloy during repetitive corrugation and straightening process. Metall. Mater. Trans. A 47, 6374–6383 (2016)

    CAS  Google Scholar 

  16. 16.

    J.J. Rino, I. Jayaram Krishnan, S. Balasivanandha Prabu, K.A. Padmanabhan, Influence of velocity of pressing in RCS processed AA8090 Al–Li alloy. Mater. Charact. 140, 55–63 (2018)

    Google Scholar 

  17. 17.

    N. Hansen, Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801–806 (2004)

    CAS  Google Scholar 

  18. 18.

    N.Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R.Z. Valiev, T.G. Langdon, Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature. Mater. Sci. Eng. A 516, 248–252 (2009)

    Google Scholar 

  19. 19.

    N. Fakhar, F. Fereshteh-Saniee, R. Mahmudi, Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion. Trans. Nonferrous Met. Soc. China 26, 3081–3090 (2016)

    CAS  Google Scholar 

  20. 20.

    S. Najafi, A.R. Eivani, M. Samaee, H.R. Jafarian, J. Zhou, A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy. Mater. Charact. 136, 60–68 (2018)

    CAS  Google Scholar 

  21. 21.

    I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP. Mater. Sci. Eng. A 486, 662–671 (2008)

    Google Scholar 

  22. 22.

    A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, T. Sakai, Effect of pressing temperature on fine-grained structure formation in 7475 aluminum alloy during ECAP. Mater. Sci. Eng. A 381, 121–128 (2004)

    Google Scholar 

  23. 23.

    V. Babu, S. Balasivanandha Prabu, K.A. Padmanabhan, Microstructure homogeneity in AA6063 alloy processed by cyclic expansion extrusion. Defect Diffusion Forum 385, 223–227 (2018)

    Google Scholar 

  24. 24.

    K.R. Cardoso, M.A. Munoz-Morris, K.V. León, D.G. Morris, Room and high temperature ECAP processing of Al–10% Si alloy. Mater. Sci. Eng. A 587, 387–396 (2013)

    Google Scholar 

  25. 25.

    S. Bathul, R.C. Anandani, A. Dhar, A.K. Srivastava, Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A 545, 97–102 (2012)

    Google Scholar 

  26. 26.

    S.Y. Chang, B.D. Ahn, S.K. Hong, S. Kamado, Y. Kojima, D.H. Shin, Tensile deformation characteristics of a nano-structured 5083 Al alloy. J. Alloys Compd. 386, 197–201 (2005)

    CAS  Google Scholar 

  27. 27.

    B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg alloys. Acta Mater. 52, 4469–4478 (2004)

    CAS  Google Scholar 

  28. 28.

    T.B. Massalski, et al. (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, 1993), p. 3534

    Google Scholar 

  29. 29.

    Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317–3331 (1998)

    CAS  Google Scholar 

  30. 30.

    T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, K. Higashi, Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing. Scr. Mater. 64, 355–358 (2011)

    CAS  Google Scholar 

  31. 31.

    H. Huang, J. Zhang, Microstructure and mechanical properties of AZ31 magnesium alloy processed by multi-directional forging at different temperatures. Mater. Sci. Eng. A 674, 52–58 (2016)

    CAS  Google Scholar 

  32. 32.

    F. Liu, H. Yuan, J. Yin, J.T. Wang, Influence of stacking fault energy and temperature on microstructures and mechanical properties of fcc pure metals processed by equal-channel angular pressing. Mater. Sci. Eng. A 662, 578–587 (2016)

    CAS  Google Scholar 

  33. 33.

    P. Rodriguez-Calvillo, J.M. Cabrera, Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing. Mater. Sci. Eng. A 625, 311–320 (2015)

    CAS  Google Scholar 

  34. 34.

    D. Singh, R. Jayaganthan, P. Nageswara Rao, A. Kumar, D. Venketeswarlu, Effect of initial grain size on microstructure and mechanical behavior of cryorolled AA 5083. Mater. Today Proc. 4, 7609–7617 (2017)

    CAS  Google Scholar 

  35. 35.

    G. Morris David, I. Gutierrez-Urrutia, M.A. Munoz-Morris, Analysis of strengthening mechanisms in a severely-plastically-deformed Al–Mg–Si alloy with submicron grain size. J. Mater. Sci. 42, 1439–1443 (2007)

    Google Scholar 

  36. 36.

    A. Chidambaram, S. Balasivanandha Prabu, K.A. Padmanabhan, Microstructure and mechanical properties of AA6061–5wt.% TiB2 in-situ metal matrix composite subjected to equal channel angular pressing. Mater. Sci. Eng. A 759, 762–769 (2019)

    CAS  Google Scholar 

  37. 37.

    O. Sitdikov, E. Avtokratova, T. Sakai, K. Tsuzaki, Ultrafine-grain structure formation in an Al–Mg–Sc alloy during warm ECAP. Metall. Mater. Trans. A 44, 1087–1100 (2013)

    CAS  Google Scholar 

  38. 38.

    W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, H. Zhou, Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting. Mater. Sci. Eng. A 540, 115–122 (2012)

    CAS  Google Scholar 

  39. 39.

    A.L.D.M. Costa, A.C.D.C. Reis, L. Kestens, M.S. Andrade, Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding. Mater. Sci. Eng. A 406, 279–285 (2005)

    Google Scholar 

  40. 40.

    K.T. Park, H.J. Kwon, W.J. Kim, Y.S. Kim, Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Mater. Sci. Eng. A 316(1–2), 145–152 (2001)

    Google Scholar 

  41. 41.

    F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, E.V. Pereloma, Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 52, 4819–4832 (2004)

    CAS  Google Scholar 

  42. 42.

    S.N. Alhajeri, N. Gao, T.G. Langdon, Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP. Mater. Sci. Eng. A 528, 3833–3840 (2011)

    Google Scholar 

  43. 43.

    V. Aferdita, M. Cabibbo, T.G. Langdon, A characterization of microstructure and microhardness on longitudinal planes of an Al–Mg–Si alloy processed by ECAP. Mater. Charact. 84, 126–133 (2013)

    Google Scholar 

  44. 44.

    S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 55, 5822–5832 (2007)

    CAS  Google Scholar 

  45. 45.

    Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006)

    CAS  Google Scholar 

  46. 46.

    S. Spriano, R. Doglione, Marcello Baricco, Texture, hardening and mechanical anisotropy in AA 8090-T851 plate. Mater. Sci. Eng. A 257, 134–138 (1998)

    Google Scholar 

  47. 47.

    H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng. A 497, 132–138 (2008)

    Google Scholar 

  48. 48.

    Y.Z. Guo, Y.L. Li, Z. Pan, F.H. Zhou, Q. Wei, A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials. Mech. Mater. 42, 1020–1029 (2010)

    Google Scholar 

  49. 49.

    A. Alam, D.D. Johnson, Structural properties and relative stability of (meta) stable ordered, partially ordered, and disordered Al–Li alloy phases. Phys. Rev. B Condens. Matter Mater. Phys. 85, 144202 (2012)

    Google Scholar 

  50. 50.

    R. Wu, Z. Qu, M. Zhang, Effects of the addition of Y in Mg–8Li–(1, 3) Al alloy. Mater. Sci. Eng. A 516, 96–99 (2009)

    Google Scholar 

  51. 51.

    T. Wang, H. Zheng, R. Wu, J. Yang, X. Ma, M. Zhang, Preparation of fine-grained and high-strength Mg–8Li–3Al–1Zn alloy by accumulative roll bonding. Adv. Eng. Mater. 18, 304–311 (2016)

    CAS  Google Scholar 

  52. 52.

    R. Jamaati, M.R. Toroghinejad, High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes. Mater. Des. 31, 4816–4822 (2010)

    CAS  Google Scholar 

  53. 53.

    H.Y. Wu, G.Z. Zhou, Plastic anisotropy and strain-hardening behavior of Mg–6% Li–1% Zn alloy thin sheet at elevated temperatures. J. Mater. Sci. 44, 6182–6186 (2009)

    CAS  Google Scholar 

  54. 54.

    G. Nussbaum, P. Saintfort, G. Regazzoni, H. Gjestland, Strengthening mechanisms in the rapidly solidified AZ 91 magnesium alloy. Scr. Mater. 23, 1079–1084 (1989)

    CAS  Google Scholar 

  55. 55.

    N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893–899 (2002)

    CAS  Google Scholar 

  56. 56.

    M. Shaarbaf, M.R. Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process. Mater. Sci. Eng. A 473, 28–33 (2008)

    Google Scholar 

  57. 57.

    N. Thangapandian, S. Balasivanandha Prabu, Effect of combined repetitive corrugation and straightening and rolling on the microstructure and mechanical properties of pure aluminum. Metallogr. Microstruct. Anal. 6, 481–488 (2017)

    CAS  Google Scholar 

  58. 58.

    D.H. Kang, T.W. Kim, Mechanical behavior and microstructural evolution of commercially pure titanium in enhanced multipass equal channel angular pressing and cold extrusion. Mater. Des. 31, 54–60 (2010)

    Google Scholar 

  59. 59.

    M.R. Rezaei, M.R. Toroghinejad, F. Ashrafizadeh, Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy. J. Mater. Proc. Technol. 211, 1184–1190 (2011)

    CAS  Google Scholar 

  60. 60.

    H. Sheikh, E. Paimozd, S.M. Hashemi, Work hardening of Duratherm 600 cobalt superalloy using repetitive corrugation and straightening process. Russ. J. Non-Ferrous Met. 51, 59–61 (2010)

    Google Scholar 

  61. 61.

    R. Armstrong, I. Godd, R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45–58 (1962)

    CAS  Google Scholar 

  62. 62.

    D. Singh, P.N. Rao, R. Jayaganthan, Effect of deformation temperature on mechanical properties of ultrafine grained Al–Mg alloys processedby rolling. Mater. Des. 50, 646–655 (2013)

    CAS  Google Scholar 

  63. 63.

    V.S. Sarma, K. Sivaprasad, D. Sturm, M. Heilmaier, Microstructure and mechanical properties of ultra fine grained Cu–Zn and Cu–Al alloys produced by cryorolling and annealing. Mater. Sci. Eng. A 489, 253–258 (2008)

    Google Scholar 

  64. 64.

    J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum. Mater. Sci. Eng. A 387, 55–59 (2004)

    Google Scholar 

  65. 65.

    G. Faraji, M.M. Mashhadi, A.R. Bushroa, A. Babaei, TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process. Mater. Sci. Eng. A 563, 193–198 (2013)

    CAS  Google Scholar 

  66. 66.

    W.J. Kim, S.I. Hong, Y.H. Kim, Enhancement of the strain hardening ability in ultrafine grained Mg alloys with high strength. Scr. Mater. 67, 689–692 (2012)

    CAS  Google Scholar 

Download references


The authors thank Prof. Indradev Samajdar, IIT Bombay, for extending the use of the EBSD facility. The authors also acknowledge the help of PSG College of Technology, Coimbatore, India for making available the HRTEM facility for this work.

Author information



Corresponding author

Correspondence to V. Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babu, V., Shanmugavel, B.P. & Padmanabhan, K.A. On the Influence of Temperature and Number of Passes on the Mechanical Properties of an Al–Mg Alloy Processed by Cyclic Expansion Extrusion. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00781-y

Download citation


  • Al–Mg alloy
  • Cyclic expansion extrusion
  • Grain refinement
  • Microstructure