Different Tribological Behaviors of SiCp/AZ91 Composites Induced by Tailoring the Distribution of SiC Particles

Abstract

In this study, the wear behaviors of the solution-treated and as-extruded SiCp /AZ91D metal matrix composites with different sizes and volume fractions of SiC particles were systematically investigated under different wear test parameters. The SiC particles exhibited a typical necklace-type distribution in the solution-treated composites and a homogeneous distribution in the as-extruded composites. Wear tests results showed that the wear rates of the as-extruded composites were lower than that of the solution-treated composites almost under all testing conditions and with the same SiC size and volume fraction. However, the dominant wear mechanisms for these two types of composites were different. The typical necklace-type distribution of SiCp in the solution-treated composites could effectively promote the occurrence of delamination owing to the weak bonding between SiCp and matrix in the particle aggregated regions. By contrast, as the bond between disperse SiCp and matrix was enhanced, the homogeneous distribution of SiCp in the as-extruded composites could promote the occurrence of adhesion and prevent the occurrence of delamination. Moreover, a higher applied load and higher volume fraction of SiCp obviously promoted the progress of delamination for the solution-treated composites, while the extent of the adhesive wear for the as-extruded composites was mainly associated with the increase of the applied load, sliding velocity and SiC particle size.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34, 245 (2018)

    Google Scholar 

  2. 2.

    J.P. Sun, B.Q. Xu, Z.Q. Yang, H. Zhou, J. Han, Y.N. Wu, D. Song, Y.C. Yuan, X.R. Zhuo, H. Liu, A.B. Ma, J. Alloy. Comp. 817, 152688 (2020)

    CAS  Google Scholar 

  3. 3.

    K. Lu, Materials science. The future of metals. Science 328, 319 (2010)

    CAS  Google Scholar 

  4. 4.

    L.S. Wang, J.H. Jiang, T. Yuan, Q.Y. Xie, H. Liu, A.B. Ma, Met. Mater. Int. 26, 551 (2020)

    CAS  Google Scholar 

  5. 5.

    Y. Sun, B.P. Zhang, Y. Wang, L. Geng, X.H. Jiao, Mater. Des. 34, 58 (2012)

    Google Scholar 

  6. 6.

    S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, Z.Q. Zhang, Corros. Sci. (2019). https://doi.org/10.1016/j.corsci.2019.108419

    Article  Google Scholar 

  7. 7.

    H. Liu, J. Ju, X.W. Yang, J.L. Yan, D. Song, J.H. Jiang, A.B. Ma, J. Alloy. Compd. 704, 509 (2017)

    CAS  Google Scholar 

  8. 8.

    H. Liu, H. Huang, J. Sun, C. Wang, J. Bai, A. Ma, X. Chen, Acta Metall. Sin. (Engl. Lett.) 32, 269 (2018).

  9. 9.

    F. Zhong, H.J. Wu, Y.L. Jiao, R.Z. Wu, J.H. Zhang, L.G. Hou, M.L. Zhang, J. Mater. Sci. Technol. 39, 124 (2020)

    Google Scholar 

  10. 10.

    B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, E.H. Han, Inter. J. Fatigue 120, 46 (2019)

    Google Scholar 

  11. 11.

    H. Liu, J. Bai, K. Yan, J.L. Yan, A.B. Ma, J.H. Jiang, Mater. Des. 93, 9 (2016)

    CAS  Google Scholar 

  12. 12.

    L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, X.C. Li, Nature 528, 539 (2015)

    CAS  Google Scholar 

  13. 13.

    B. Selvam, P. Marimuthu, R. Narayanasamy, V. Anandakrishnan, K.S. Tun, M. Gupta, M. Kamaraj, Mater. Des. 58, 475 (2014)

    CAS  Google Scholar 

  14. 14.

    L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71, 93 (2015)

    CAS  Google Scholar 

  15. 15.

    M.E. Turan, H. Zengin, Y. Sun, Met. Mater. Int. 26, 541 (2020)

    CAS  Google Scholar 

  16. 16.

    D.H. Cho, J.H. Nam, B.W. Lee, S.O. Yim, I.M. Park, Met. Mater. Int. 22, 332 (2016)

    CAS  Google Scholar 

  17. 17.

    B.N. Sahoo, S.K. Panigrahi, Tribo. Int. 135, 463 (2019)

    CAS  Google Scholar 

  18. 18.

    S. García-Rodríguez, B. Torres, A. Maroto, A.J. López, E. Otero, J. Rams, Wear 390–391, 1 (2017)

    Google Scholar 

  19. 19.

    S. Suresha, B.K. Sridhara, Compos. Sci. Technol. 70, 1652 (2010)

    CAS  Google Scholar 

  20. 20.

    B. Saleh, J.H. Jiang, A.B. Ma, D. Song, D.H. Yang, Q. Xu, Met. Mater. Int. 26, 933 (2020)

    CAS  Google Scholar 

  21. 21.

    M.B. Karamis, A.A. Cerit, B. Selcuk, F. Nair, Wear 289, 73 (2012)

    CAS  Google Scholar 

  22. 22.

    L.Q. Wu, R.Z. Wu, L.G. Hou, J.H. Zhang, M.L. Zhang, J. Alloy. Compd. 750, 530 (2018)

    CAS  Google Scholar 

  23. 23.

    K.K. Deng, C.J. Wang, K.B. Nie, X.J. Wang, Acta Metall. Sin. (Engl. Lett.) 32, 413 (2019).

  24. 24.

    J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process. Technol. 93, 1 (1999)

    Google Scholar 

  25. 25.

    A. Luo, Metall. Mater. Trans. A 26, 2445 (1995)

    Google Scholar 

  26. 26.

    X.J. Wang, X.S. Hu, W.Q. Liu, J.F. Du, K. Wu, Y.D. Huang, M.Y. Zheng, Mater. Sci. Eng. A 682, 491 (2017)

    CAS  Google Scholar 

  27. 27.

    J. Chen, C.G. Bao, Y. Wang, J.L. Liu, C. Suryanarayana, Acta Metall. Sin. (Engl. Lett.) 28, 1354 (2015).

  28. 28.

    X.J. Wang, L. Xu, X.S. Hu, K.B. Nie, K.K. Deng, K. Wu, M.Y. Zheng, Mater. Sci. Eng. A 528, 6387 (2011)

    CAS  Google Scholar 

  29. 29.

    S.J. Shang, K.K. Deng, K.B. Nie, J.C. Li, S.S. Zhou, F.J. Xu, J.F. Fan, Mater. Sci. Eng. A 610, 243 (2014)

    CAS  Google Scholar 

  30. 30.

    M.T. Parizi, A. Habibolahzadeh, G.R. Ebrahimi, Mater. Chem. Phys. 199, 485 (2017)

    Google Scholar 

  31. 31.

    ASTM G190-15, Standard Guide for Developing and Selecting Wear Tests, (ASTM International, West Conshohocken, PA, 2015), https://www.astm.org

  32. 32.

    ASTM G99-17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, (ASTM International, West Conshohocken, PA, 2017), https://www.astm.org

  33. 33.

    ASTM E10-18, Standard Test Method for Brinell Hardness of Metallic Materials, (ASTM International, West Conshohocken, PA, 2018), https://www.astm.org

  34. 34.

    A.S. Verma, A. Singh, D. Kumar, A.K. Dubey, A.C.S. Biomater, Sci. Eng. 6, 3055 (2020)

    CAS  Google Scholar 

  35. 35.

    A.S. Verma, D. Kumar, A.K. Dubey, Ceram. Int. 44, 16119 (2018)

    CAS  Google Scholar 

  36. 36.

    J.P. Sun, Z.Q. Yang, J. Han, T. Yuan, D. Song, Y.N. Wu, Y.C. Yuan, X.R. Zhuo, H. Liu, A.B. Ma, J. Alloy. Compd. 780, 443 (2019)

    CAS  Google Scholar 

  37. 37.

    G. Garcés, P. Pérez, P. Adeva, Scr. Mater. 52, 615 (2005)

    Google Scholar 

  38. 38.

    K. Hokkirigawa, K. Kato, Tribol. Int. 21, 51 (1988)

    CAS  Google Scholar 

  39. 39.

    Z.F. Zhang, L.C. Zhang, Y.W. Mai, Wear 194, 38 (1996)

    CAS  Google Scholar 

  40. 40.

    N.P. Suh, Wear 25, 111 (1973)

    CAS  Google Scholar 

  41. 41.

    N.P. Suh, Wear 44, 1 (1977)

    Google Scholar 

  42. 42.

    J. Archard, J. Appl. Phys. 24, 981 (1953)

    Google Scholar 

  43. 43.

    B. Venkataraman, G. Sundararajan, Acta Mater. 44, 451 (1996)

    CAS  Google Scholar 

  44. 44.

    L. Cao, Y. Wang, C. Yao, Wear 140, 273 (1990)

    CAS  Google Scholar 

  45. 45.

    Q. Zhao, Y. Liang, Z. Zhang, X. Li, L. Ren, Metals 6, 227 (2016)

    Google Scholar 

  46. 46.

    C.Y.H. Lim, S.C. Lim, A. Gupta, Wear 255, 629 (2003)

    CAS  Google Scholar 

  47. 47.

    C. Kanchanomai, B. Saengwichian, A. Manonukul, Wear 267, 1665 (2009)

    CAS  Google Scholar 

  48. 48.

    X. Cao, W.L. Huang, C.G. He, J.F. Peng, J. Guo, W.J. Wang, Q.Y. Liu, M.H. Zhu, Wear 348–349, 98 (2016)

    Google Scholar 

  49. 49.

    H. Mishina, A. Hase, Wear 432–433, 202936 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (B200202131), the National Natural Science Foundation of China (Grant Nos. 51871074, 51971078 and 51671066) and the Project National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology (Grant No. 201911).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Lu, N., Wang, X. et al. Different Tribological Behaviors of SiCp/AZ91 Composites Induced by Tailoring the Distribution of SiC Particles. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00780-z

Download citation

Keywords

  • Magnesium matrix composites
  • SiCp
  • Wear mechanisms
  • Wear rate