Role of Cracked Interlayer on Deformation Processing of Al/hard Chrome/Al Laminate

Abstract

The Al/hard chrome/Al laminate with cracked interlayer was processed by single-pass rolling and accumulative roll bonding (ARB). A micro-cracked hard chrome with the thickness range of 5–15 µm was deposited on the Al layer by the electroplating process. The micro-cracked hard chrome layer was considered as a model material to investigate the deformation processing of the metal laminate with a discontinuous interlayer. The layered composite with discontinuous interlayer was modeled by finite element analysis. Three configurations of discontinuities, including the longitudinal, transverse, and rectangular pattern, were considered in the interlayer. In agreement with the experiments, the simulation results showed that during the roll bonding process, the discontinuities that are oriented transversely spread in the rolling direction while those that are located longitudinally slightly expand in the transverse direction. The peeling test after the single roll bonding revealed that the bond strength of the Al/Cr composite with cracked interlayer increased with increasing the thickness reduction and decreasing the hard chrome layer. The hard chrome layer was gradually fragmented during the ARB process and was distributed in the Al matrix.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. 1.

    M. Rahdari, M. Reihanian, S.M.L. Baghal, Mater. Sci. Eng. A 738, 98–110 (2018)

    CAS  Google Scholar 

  2. 2.

    J.-M. Lee, B.-R. Lee, S.-B. Kang, Mater. Sci. Eng. A 406, 95–101 (2005)

    Google Scholar 

  3. 3.

    L. Su, C. Lu, A.K. Tieu, G. Deng, X. Sun, Mater. Sci. Eng. A 559, 345–351 (2013)

    CAS  Google Scholar 

  4. 4.

    F. Daneshvar, M. Reihanian, K. Gheisari, Mater. Sci. Eng. B 206, 45–54 (2016)

    CAS  Google Scholar 

  5. 5.

    S.V.A. Ana, M. Reihanian, B. Lotfi, Mater. Sci. Eng. A 647, 303–312 (2015)

    CAS  Google Scholar 

  6. 6.

    V. Yousefi Mehr, M.R. Toroghinejad, A. Rezaeian, Mater. Sci. Eng. A 601, 40–47 (2014)

    CAS  Google Scholar 

  7. 7.

    G.H. Min, J.M. Lee, S.B. Kang, H.W. Kim, Mater. Lett. 60, 3255–3259 (2006)

    CAS  Google Scholar 

  8. 8.

    A. Mozaffari, H.D. Manesh, K. Janghorban, J. Alloys Compd. 489, 103–109 (2010)

    CAS  Google Scholar 

  9. 9.

    A. Shabani, M.R. Toroghinejad, J. Mater. Eng. Perform. 24, 4746–4754 (2015)

    CAS  Google Scholar 

  10. 10.

    M.M. Mahdavian, L. Ghalandari, M. Reihanian, Mater. Sci. Eng. A 579, 99–107 (2013)

    CAS  Google Scholar 

  11. 11.

    L. Ghalandari, M.M. Mahdavian, M. Reihanian, Mater. Sci. Eng. A 593, 145–152 (2014)

    CAS  Google Scholar 

  12. 12.

    L. Ghalandari, M.M. Mahdavian, M. Reihanian, M. Mahmoudiniya, Mater. Sci. Eng. A 661, 179–186 (2016)

    CAS  Google Scholar 

  13. 13.

    K. Verstraete, H. Azzedine, A.-L. Helbert, F. Brisset, D. Bradai, T. Baudin, Adv. Eng. Mater. 20, 1700285 (2018)

    Google Scholar 

  14. 14.

    Z. Chen, X. Wu, H. Hu, Q. Chen, Q. Liu, J. Mater. Eng. Perform. 23, 990–1001 (2014)

    CAS  Google Scholar 

  15. 15.

    F. Nowicke, A. Zavaliangos, H.C. Rogers, Int. J. Mech. Sci. 48, 868–877 (2006)

    Google Scholar 

  16. 16.

    H.S. Liu, B. Zhang, G.P. Zhang, Scripta Mater. 64, 13–16 (2011)

    CAS  Google Scholar 

  17. 17.

    S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, I.J. Beyerlein, Acta Mater. 79, 282–291 (2014)

    CAS  Google Scholar 

  18. 18.

    T. Öztürk, J. Mirmesdagh, T. Ediz, Mater. Sci. Eng. A 175, 125–129 (1994)

    Google Scholar 

  19. 19.

    S.M. Arbo, I. Westermann, B. Holmedal, Key Eng. Mater. 767, 316–322 (2018)

    Google Scholar 

  20. 20.

    M. Reihanian, M. Naseri, Mater. Des. 89, 1213–1222 (2016)

    CAS  Google Scholar 

  21. 21.

    Y.-M. Hwang, H.-H. Hsu, H.-J. Lee, Int. J. Mach. Tools Manuf 36, 47–62 (1996)

    Google Scholar 

  22. 22.

    S.L. Semiatin, H.R. Piehler, Metall. Trans. A 10, 97–107 (1979)

    Google Scholar 

  23. 23.

    P.S. Steif, J. Appl. Metalwork. 4, 317–326 (1987)

    CAS  Google Scholar 

  24. 24.

    F. Liang, H.-F. Tan, B. Zhang, G.-P. Zhang, Scripta Mater. 134, 28–32 (2017)

    CAS  Google Scholar 

  25. 25.

    N. Junqua, J. Grilhé, Philos. Mag. Lett. 69, 61–70 (1994)

    CAS  Google Scholar 

  26. 26.

    H. Yu, A.K. Tieu, C. Lu, X. Liu, A. Godbole, H. Li, C. Kong, Q. Qin, Sci. Rep. 4, 5017 (2014)

    CAS  Google Scholar 

  27. 27.

    N.V. Govindaraj, J.G. Frydendahl, B. Holmedal, Mater. Des. 1980–2015 52, 905–915 (2013)

    CAS  Google Scholar 

  28. 28.

    T. Imai, H. Utsunomiya, R. Matsumoto, Procedia Eng. 184, 306–312 (2017)

    Google Scholar 

  29. 29.

    H. Utsunomiya, S. Maeda, T. Imai, R. Matsumoto, CIRP Ann. 67, 317–320 (2018)

    Google Scholar 

  30. 30.

    Ö. Yazar, T. Ediz, T. Öztürk, Acta Mater. 53, 375–381 (2005)

    CAS  Google Scholar 

  31. 31.

    G. Bolelli, V. Cannillo, L. Lusvarghi, S. Ricco, Surf. Coat. Technol. 200, 2995–3009 (2006)

    CAS  Google Scholar 

  32. 32.

    N. Bay, Met. Constr. 18, 369–372 (1986)

    CAS  Google Scholar 

  33. 33.

    W. Habila, H. Azzeddine, B. Mehdi, K. Tirsatine, T. Baudin, A.-L. Helbert, F. Brisset, S. Gautrot, M.-H. Mathon, D. Bradai, Mater. Charact. 147, 242–252 (2019)

    CAS  Google Scholar 

  34. 34.

    V.C. Srivastava, T. Singh, S.G. Chowdhury, V. Jindal, J. Mater. Eng. Perform. 21, 1912–1918 (2012)

    CAS  Google Scholar 

  35. 35.

    A. Mozaffari, M. Hosseini, H.D. Manesh, J. Alloys Compd. 509, 9938–9945 (2011)

    CAS  Google Scholar 

  36. 36.

    K. Brunelli, L. Peruzzo, M. Dabalà, Mater. Chem. Phys. 149–150, 350–358 (2015)

    Google Scholar 

  37. 37.

    M. Reihanian, R. Ebrahimi, N. Tsuji, M.M. Moshksar, Mater. Sci. Eng. A 473, 189–194 (2008)

    Google Scholar 

  38. 38.

    M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, N. Tsuji, Mater. Charact. 59, 1312–1323 (2008)

    CAS  Google Scholar 

  39. 39.

    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scripta Mater. 39, 1221–1227 (1998)

    CAS  Google Scholar 

  40. 40.

    Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579–583 (1999)

    CAS  Google Scholar 

  41. 41.

    R. Jamaati, M.R. Toroghinejad, A. Najafizadeh, Mater. Sci. Eng. A 527, 3857–3863 (2010)

    Google Scholar 

  42. 42.

    A. Shabani, M.R. Toroghinejad, A. Shafyei, Mater. Sci. Eng. A 558, 386–393 (2012)

    CAS  Google Scholar 

  43. 43.

    H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, K. Wu, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 543, 249–256 (2012)

    CAS  Google Scholar 

  44. 44.

    R.N. Dehsorkhi, F. Qods, M. Tajally, Mater. Sci. Eng. A 530, 63–72 (2011)

    CAS  Google Scholar 

  45. 45.

    M. Abbasi, S.A. Sajjadi, J. Mater. Eng. Perform. 27, 3508–3520 (2018)

    CAS  Google Scholar 

  46. 46.

    M. Talebian, M. Alizadeh, Mater. Sci. Eng. A 590, 186–193 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by Shahid Chamran University of Ahvaz (Ahvaz, Iran) through the Grant No. SCU.EM98.375 is gratefully appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Lari Baghal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fakher, S., Reihanian, M., Lari Baghal, S.M. et al. Role of Cracked Interlayer on Deformation Processing of Al/hard Chrome/Al Laminate. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00768-9

Download citation

Keywords

  • Layered composites
  • Roll bonding
  • Accumulative roll bonding
  • Finite element modeling
  • Discontinuous layer